Изменения

Перейти к: навигация, поиск

Линейные уравнения высших порядков

1490 байт добавлено, 02:56, 30 ноября 2015
Свойства решения однородного уравнения
Очевидно, что <tex>\alpha (\Sigma_{i = 0}^{n} C_ky_k) = \Sigma_{i = 0}^{n} C_k\alpha(y_k)</tex>.
==Свойства решения однородного уравнения==
Если <tex>y_1(x), \dots, y_n(x)</tex> {{---}} решения ЛОДУ (линейного однородного дифференциального уравнения), то <tex>y(x) = \Sigma_{i = 0}^{n} C_ky_k(x)</tex> {{---}} решение.
Отсюда делаем вывод, что множество решений ЛОДУ - это линейное пространство.
{{Определение|definition= функции <tex>y_1(x), \dots, y_n(x)</tex> называются линейно зависимыми(ЛЗ), если
<tex>\alpha_1y_1(x) + \alpha_2y_2(x) + \dots + \alpha_ny_n(x) \equiv 0 \Leftrightarrow \Sigma_{k = 0}^{n} \alpha_k^2 = 0</tex>.
иначе они называются линейно независимыми(ЛНЗ).}}
{{Утверждение|statement=если <tex>y_1(x),\dots, y_n(x)</tex> - ЛЗ в промежутке (a, b) , то одна из них представляется линейной комбинацией остальных.
|proof=пусть <tex>\alpha_1y_1(x) + \alpha_2y_2(x) + \dots + \alpha_ny_n(x) = 0</tex> при некотором наборе <tex>\alpha_i</tex> , среди которых хотя бы одна отлична от нуля.
тогда <tex>y_m(x) = -\frac{\alpha_1}{\alpha_m}y_1 - \frac{\alpha_2}{\alpha_m}y_2 - \dots - \frac{\alpha_{m - 1}}{\alpha_m}y_{m - 1}- \frac{\alpha_{m + 1}}{\alpha_m}y_{m + 1} - \dots - \frac{\alpha_n}{\alpha_m}y_n</tex>, где <tex>\alpha_m \neq 0</tex> }}
Анонимный участник

Навигация