Изменения
→Уравнение в полных дифференциалах
{{Определение| definition= Уравнение вида: <tex>M(x, y)dx + N(x, y)dy = 0 \:\: (6)</tex> называется уравнением в полных дифференциалах, если <tex>(6) = du(x, y)</tex>}}
т.к. <tex>du(x, y) = 0 \Leftrightarrow u(x, y) = C \: -</tex> общий интеграл.
{{Теорема|statement = Пусть <tex>M(x, y), N(x, y) \in C(G)</tex>, где G - односвязная область, и <tex>\frac{\partial M(x,y)}{\partial y}, \: \frac{\partial N(x, y)}{\partial x} \in C(G)</tex>; <br> Тогда <tex>Mdx + Ndy = du \: \Leftrightarrow \frac{\partial M(x, y)}{\partial y} \equiv \frac{\partial N(x, y)}{\partial x} </tex>| proof = Рассмотрим первоначальное уравнение: <br> <tex> M(x,y)dx + N(x,y)dy = 0 </tex> <br> Перепишем его в виде: <tex> M(x,y)dx + N(x,y)dy \equiv du(x,y) = \dfrac{\partial u}{\partial x}dx + \dfrac{\partial u}{\partial y}dy. </tex> <br> Тогда видим, что <tex> \dfrac{\partial u}{\partial x} = M, \dfrac{\partial u}{\partial y} = N </tex> <br> Т.к.<tex> M,N </tex> - непрерывные на <tex> C </tex>, то давайте рассмотрим <tex> \dfrac{\partial^2 u}{\partial x \partial y} = \dfrac{\partial M}{\partial y} </tex> и <tex> \dfrac{\partial^2 u}{\partial y \partial x} = \dfrac{\partial N}{\partial x} </tex> <br> Левые части в этих равенствах равны, а следовательно равны и правые. Необходимость доказана. <br> Докажем теперь достаточность. <br> Предположим, что равенство частных производных выполняется, тогда рассмотрим следующую функцию: <br> <tex> a(x,y) = \int_{x_{0}}^{x}M(q, y)dq + \int_{y_{0}}^{y}N(x_{0}, z)dz </tex> <br> Найдем для нее частные производные по <tex> x </tex> и <tex> y </tex>: <br> <tex> \dfrac{\partial a}{\partial x} = M(x,y) </tex>, а дифференцируя по <tex> y </tex> и учитывая условие <tex> \frac{\partial M(x, y)}{\partial y} \equiv \frac{\partial N(x, y)}{\partial x} </tex>, получаем : <br> <tex> \dfrac{\partial a}{\partial y} = \int_{x_{0}}^{x}\frac{\partial M(q, y)}{\partial y}dq + N(x_0, y) = N(x,y) - N(x_0,y) + N(x_0,y) = N(x,y) </tex> , достаточность доказана, т.к. <tex> a(x,y) = u(x,y) - общий интеграл </tex> - общий интеграл . }}
<b>Решение:</b> <tex>u(x, y) = \int_{x_{0}}^{x}M(x, y)dx + \int_{y_{0}}^{y}N(x_{0}, y)dy = C \: - </tex> Общее решение.