Изменения
Нет описания правки
Заметим, что если имеется два различных двусвязных ребра, то они лежат на некотором вершинно простом цикле.
{{Определение
|definition=
'''Блоками''' (англ. ''block''), или компонентами вершинной двусвязности графа, называют его подграфы, множества ребер которых — классы эквивалентности вершинной двусвязности, а множества вершин {{---}} множества всевозможных концов ребер из соответствующих классов.
}}
{{Теорема
''Замечание.'' Рассмотрим следующее определение: вершины <tex>u</tex> и <tex>v</tex> называются вершинно двусвязными, если между ними существуют 2 пути, не пересекающихся по вершинам, за исключением концов. Это определение не может претендовать на корректность, так как в этом случае отношение вершинной двусвязности перестанет быть транзитивным.
==Точки сочленения==