Изменения

Перейти к: навигация, поиск

Верхние и нижние оценки хроматического числа

11 байт добавлено, 17:08, 13 января 2016
Нет описания правки
*Произвольную вершину <tex>u</tex>, покрасим в цвет <tex>dist(v,u)</tex> <tex> \mod </tex> <tex> (\Delta + 1)</tex>, где <tex>dist(v,u)</tex>{{---}} расстояние между вершинами <tex>u,v</tex> в графe <tex>T</tex>.
Докажем от противного, что после выполнения описанного алгоритма граф <tex>G</tex> будет правильно раскрашен.
Предположим, что после выполнения алгоритма покраски в графе существует ребро, соединяющее вершины <tex> a,b </tex> одного цвета.Пусть <tex>color(v)</tex> {{---}} цвет вершины после выполнения алгоритма раскраски.Заметим, что для произвольной вершины графа <tex>p</tex>, <tex>dist(v,p) = color(p) + n(\Delta + 1)</tex> , <tex>n \geqslant 0 </tex>.Тогда, <tex>dist(v,a) - dist(v,b) = k(\Delta + 1)</tex>.Поскольку в дереве dfs между вершинами находящимися на одинаковом расстоянии от корня нет перекрестных ребер, то <tex> k \geqslant 1</tex>. То есть, вершины <tex>a,b</tex> лежат на простом цикле длины по крайней мере <tex>\Delta + 2</tex>. Получается противоречие с условием потому, что длина максимального простого цикла получается больше чем <tex>\Delta</tex>.
Таким образом в графе <tex>G</tex> после выполнения алгоритма раскраски нет вершин одного цвета соединенных ребром и при этом каждая вершина покрашена в один из <tex>\Delta + 1</tex>, то есть <tex>G</tex> правильно раскрашен в <tex>\Delta + 1</tex> цвет, следовательно <tex>\chi(G) \leqslant \Delta(G) + 1</tex>
|definition=
'''Число независимости''' <tex>\alpha(G)</tex> графа <tex>G(V,E)</tex> {{---}} <tex>\max \{|S|:S \in V</tex> и <tex>S </tex> независимо в G<tex>\}</tex>
}}
{{Лемма
{{Лемма
|about = нижняя оценка Геллера
|statement= Пусть <tex>G(V,E)</tex> {{---}} произвольный связный неориентированный граф с <tex>n</tex> вершинами и <tex>m</tex> ребрами .Тогда, <tex>\frac{n^2}{n^2 - 2m} \leqslant \chi(G) </tex>.
|proof=
Пусть, <tex>V_1,V_2...V_\chi</tex> множеств вершин окрашенных в соответствующие цвета при правильно покраски графа <tex>G</tex>.
Анонимный участник

Навигация