Изменения
Дока_з_ите -> Дока_ж_ите
# Постройте регулярную Марковскую цепь с $n$ состояниями и заданным распределением $[a, 1-a]$.
# В случае, если НОД длин циклов единственного эргодического класса не равен 1, соотвтствующая Марковская цепь будет периодической и эргодического распреления не будет. Тем не менее, что можно сказать про распределения в моменты с заданным остатком по модулю НОД длин циклов?
# Завершите доказательство леммы из эргодической теоремы для регулярных цепей. ДоказитеДокажите, что если $P$ - матрица переходов, не содержащая нулей, то для любого вектора $u$ с максимальным элементом $M$ и минимальным элементом $m$ максимальный и минимальный элементы $Pu$ $M'$ и $m'$, соответственно, удовлетворяют условиям $m \le m'$, $M \ge M'$, $M'-m' \le (M - m)(1 - 2\varepsilon)$, где $\varepsilon$ - минимальный элемент $P$.
</wikitex>