Изменения

Перейти к: навигация, поиск

Количество подпалиндромов в строке

1081 байт добавлено, 15:50, 27 марта 2016
Нет описания правки
{{Определение|definition='''Палиндромом''' (англ. <i>Palindrome</i>) называется строка, которая одинаково читается как слева направо, так и справа налево.}}
 
{{Шаблон:Задача
|definition =
Пусть дана строка <tex>s</tex>, требуется посчитать количество подпалиндромов [[Основные_определения,_связанные_со_строками#palindrome | палиндромов]] в ней за <tex>O(|s|\cdot\log{|s|)}</tex>c помощью хешей.
}}
== Алгоритм ==
=== Идея ===
Рассмотрим сначала задачу поиска палиндромов нечетной длины. Для каждой позиции в строке <tex>s</tex> найдем длину наибольшего палиндрома с центром в этой позиции. Длину Очевидно, что если строка <tex>t</tex> является палиндромом, то строка полученная вычеркиванием первого и последнего символа из <tex>t</tex> также является палиндромом. Поэтому длину палиндрома будем можно искать [[Целочисленный_двоичный_поиск | бинарным поиском]]. Для сохранения асимптотики проверку совпадения левой и правой половины требуется выполнить за <tex>O(1)</tex>. Для этого можно воспользоваться методом хеширования. Для палиндромов четной длины алгоритм такой же, только следует проверять вторую строку со сдвигом на единицу, при этом мы не посчитаем никакой палиндром дважды из-за четности-нечетности палиндромов. 
=== Псевдокод ===
'''int''' binarySearch(s : '''string''', center, shift : '''int'''):
=== Избавление от коллизий ===
Проверять У хешей есть один недостаток {{---}} коллизии, у двух разных строк хеши могут совпадать. Абсолютно точно проверить две подстроки на совпадение можно с помощью [[Суффиксный массив | суффиксного массива]]. Для этого построим суффиксный массив для строки <tex>s + \# + reverse(s)</tex>, при этом сохраним промежуточные результаты классов эквивалентности <tex>c</tex>. Пусть нам требуется проверить на совпадение подстроки <tex>s[i..i + l]</tex> и <tex>s[j..j + l]</tex>. Разобьем каждую нашу строку на две пересекающиеся подстроки длиной <tex>2^k</tex>, где <tex>k = \lfloor \log{l} \rfloor</tex>. Тогда наши строки совпадают, если <tex>c[k][i] = c[k][j]</tex> и <tex>c[k][i + l - 2^k] = c[k][j + l - 2^k]</tex>.
Итоговая асимптотика алгоритма: предподсчет за построение суффиксного массива и <tex>O(\log(|s|)</tex> на запрос, если предподсчитать все <tex>k</tex>, то <tex>O(1)</tex>.
*[[Поиск наибольшей общей подстроки двух строк с использованием хеширования]]
 
==Источники информации==
* [http://e-maxx.ru/algo/suffix_array#5 MAXimal :: algo :: Суффиксный массив]
[[Категория:Алгоритмы и структуры данных]]
[[Категория:Суффиксный массив]]
Анонимный участник

Навигация