Изменения

Перейти к: навигация, поиск

Обсуждение участницы:Анна

1861 байт добавлено, 17:35, 2 июня 2016
Идея
Пусть есть работы <tex>1 \ldots n</tex> с дедлайнами <tex>d_1 \leqslant d_2 \leqslant \ldots \leqslant d_n</tex>. Тогда существует оптимальное расписание, в котором времена завершения работ идут в том же порядке, то есть <tex>C_1 \leqslant C_2 \leqslant \ldots \leqslant C_n</tex>.
|proof=
Рассмотрим две работы <tex>i</tex> и <tex>j</tex> из какого-либо оптимального расписания такие, что <tex>C_i > C_j</tex> и <tex>d_i < d_j</tex>. Поменяем эти работы в расписании местами, то есть <tex>C'_i = C_j</tex> и <tex>C'_j = C_i</tex>. Если они обе успевали выполниться вовремя, то это свойство сохранится, так как <tex>d_i < d_j</tex>, значит по-прежнему <tex>T_i = 0</tex> и <tex>T_j = 0</tex>, то есть значение целевой функции мы не ухудшили и расписание осталось оптимальным. Если обе работы не успевали выполниться вовремя, то когда мы поменяем их местами ничего не изменится, то есть значение целевой функции останется прежним, так как мы не меняли значения времен окончаний, а только поменяли их местами. Если работа <tex>j</tex> успевала выполниться, а <tex>i</tex> {{---}} нет, то мы снова не ухудшим значение целевой функции. Покажем это. До того, как мы поменяли работы местами, было <tex>T_i + T_j = C_i - d_i</tex>, так как <tex>T_j = 0</tex>. После того, как мы поменяли работы местами, <tex>T_i + T_j = C'_i - d_i + C'_j - d_j = C_j - d_i + C_i - d_j = C_i - d_i + (C_j - d_j)</tex>. Но так как работа <tex>j</tex> успевает выполниться до дедлайна, то <tex>C_j - d_j \leqslant 0</tex>.
}}
 
=== Псевдокод ===
577
правок

Навигация