Изменения

Перейти к: навигация, поиск

1ripmtnsumwu

15 941 байт добавлено, 19:27, 4 сентября 2022
м
rollbackEdits.php mass rollback
{{Задача
|definition=Дана задача на нахождение расписания:
# У нас есть несколько работ, которе которые необходимо выполнит выполнить на одном станке.# У работ есть время появления <tex>r_i</tex>.
# Работы разрешается прерывать в любой момент времени.
# Все значения целочисленны, веса <tex>w_{i}</tex> положительны.
=== Идея ===
Пусть работы заданы в порядке неубывания их дедлайнов, то есть <tex>d_1 \leqslant d_2 \leqslant \ldots \leqslant d_n</tex>. За <tex>k</tex> обозначим количество различных <tex>r_{i}</tex>. За <tex>W = \sum\limits_{j = 1}^{n} {w_j}</tex>
Назовем множество работ <tex>S</tex> '''выполнимым'''(англ. ''feasible''), если существует такое расписание для работ из <tex>S</tex>, что все работы будут выполнены без опозданий. Чтобы проверить, является ли множество работ выполнимым, воспользуемся упрощенной версией [[1precpmtnriLmax#edd|<tex>\mathrm{EDD }</tex> правила]]<ref>Peter Brucker «Scheduling Algorithms», fifth edition, Springer — с. 70</ref> (<tex>\mathrm{EDD}</tex> (''earliest due date'') правило {{---}} правило наименьшего срока):
:''Составим расписание работ таким образом, чтобы первой в расписании стояла работа с наименьшим значением <tex>r_{i}</tex>. В любой момент времени, когда появляется новая работа, либо заканчивает выполняться текущая, вставим в расписание работу с наименьшим оставшимся сроком.''
<tex>S</tex> выполнимо тогда и только тогда, когда все работы в <tex>\mathrm{EDD }</tex> расписании выполняются без опозданий. Это прямое следствие из уже [[1precpmtnriLmax#correctness|доказанной теоремы]]4.4 <ref>Peter Brucker «Scheduling Algorithms», fifth edition, Springer — с. 70</ref>. Если в <tex>S</tex> содержится <tex>n</tex> работ, то построение <tex>\mathrm{EDD }</tex> расписание может быть выполнено за <tex>O(n \log n)</tex> времени. Наша задача сводится к тому, чтобы найти выполнимое множество работ с максимальным суммарным весом.
Для данного непустого множества <tex>S</tex> определим следующие величины::* <tex>r(S) = \min\limits_{i \in S} r_{i} ; </tex>* <tex>p(S) = \sum\limits_{i \in S} p_{i}; </tex>* <tex>w(S) = \sum\limits_{i \in S} w_{i}</tex>Кроме того, обозначим за <tex>C(S)</tex> время последней выполненной работы из <tex>S</tex> в <tex>\mathrm{EDD}</tex> расписании. Оно состоит из периодов непрерывного выполнения работы, разделенных периодами бездействия, когда нет доступных работ для выполнения. Это означает, что <tex>S</tex> может быть разделено на множества <tex>S_{1} \ldots S_{x}</tex>, для которых выполняется <tex>C(S_{i}) = r(S_{i}) + p(S_{i}) < r(S_{i + 1})</tex> для <tex>i = 1 \ldots x - 1 </tex>.  Выполнимое множество <tex>S</tex> является '''блоком''' (англ. ''block''), если работы из <tex>S</tex> обрабатываются непрерывно с начала и до конца, и <tex>S</tex> не может быть разделен на подмножества, расписания для которых не пересекаются, например, если <tex>C(S) = r(S)+ p(S)</tex> и <tex>S</tex> не является объединением <tex>S_{1}</tex> и <tex>S_{2}</tex> таких, что <tex>C(S_{1}) < r(S_{2})</tex>. Решим задачу <tex dpi>1 \mid r_i, pmtn \mid \sum w_{i}U_{i}</tex> методами [[Динамическое программирование|динамического программирования]]. Введем величину <tex>C_{i}(r, w) = \min \{C(S) \mid S \subseteq \{ 1 \ldots i \} </tex> {{---}} выполнимое, причём выполняется <tex> r(S) \geqslant r \wedge w(S) \geqslant w \}</tex> и <tex>C_{i}(r, w) = \infty</tex>, если множеств, удовлетворяющих условиям, нет. Максимальный вес выполнимого множества задается максимальным значением <tex>w</tex> такого, что <tex>C_{n}(r_{\min}, w)</tex> конечно, где <tex>r_{\min} = \min\limits_{j = 1 \ldots n} r_{i}</tex>. Посчитаем значения <tex>C_{j}(r, w)</tex> за <tex>n</tex> итераций с начальными значениями::<tex>C_{0}(r, 0) = 0</tex> для всех <tex>r</tex> :<tex>C_{0}(r, w) = \infty</tex> для всех <tex>r</tex> и <tex>w > 0</tex> <tex>j</tex> не может содержаться в выполнимом множестве, если <tex>r(S) > r_{j}</tex>. Следовательно,:<p><tex>C_{j}(r, w) \left \{\begin{array}{ll} = C_{j - 1}(r, w), & \text{if } r > r_{j} \\\leqslant C_{j - 1}(r, w), & \text{otherwise} \end{array} \right. </tex></p> Отсюда следует, что нам нужно посчитать только такие значения <tex>C_{j} (r, w)</tex> для которых <tex>r \leqslant r_{j}</tex>. Пусть <tex> S \subseteq \{ 1 \ldots j \} </tex> и <tex>C_{j}(r, w) = C(S)</tex>. Если <tex>j \notin S</tex>, тогда <tex>C_{j}(r, w) = C_{j - 1}(r, w)</tex>. Иначе рассмотрим два случая. === Разбор случаев === ==== Первый случай ====Работа <tex>j</tex> начинается после <tex>C(S \setminus \{j\})</tex>.  Рассмотрим два подслучая: # <tex>C(S \setminus \{j\}) \leqslant r_{j}</tex> <br> В этом случае <tex>C(S) = r_{j} + p_{j}</tex># <tex>C(S \setminus \{j\}) > r_{j}</tex> <br>Работы из <tex>C(S \setminus \{j\})</tex> обрабатываются непрерывно в интервале <tex>[r_{j}, C(S \setminus \{j\})]</tex>, потому что иначе <tex>j</tex> начнет обрабатываться до <tex>C(S \setminus \{j\})</tex>. Делаем вывод, что <tex>C_{j} (r, w) = \max(r_{j} , C(S \setminus \{j\}) + p_{j}</tex>. Предположим, что <tex>C(S \setminus \{j\})</tex> такое, что <tex>C(S \setminus \{j\}) = C_{j - 1}(r, w - w_{j})</tex> и, если это не так, заменим <tex>C(S \setminus \{j\})</tex> на выполнимое подмножество из <tex>1 \ldots j - 1</tex> для которого это выполняется. Из этого следует, что:<tex>C_{j}(r, w) = \max(r_{j} , C_{j - 1}(r, w − w_{j})) + p_{j}</tex>. ==== Второй случай ====Работа <tex>j</tex> начинается перед <tex>C(S \setminus \{j\})</tex>.  В этом случае существует простой в <tex>\mathrm{EDD}</tex> расписании для множества <tex>C(S \setminus \{j\})</tex> после <tex>r_{j}</tex>. Пусть <tex>S'</tex> {{---}} последний блок в <tex>C(S \setminus \{j\})</tex>, то есть <tex>r(S') = \max\{r(B) \mid B </tex> является блоком в <tex> C(S \setminus \{j\}) \} </tex>. Тогда <tex>r(S') \geqslant r_{j}</tex>, в таком случае обязано выполняться равенство <tex>C(S') = C_{j - 1}(r(S'), w(s'))</tex>, иначе расписание для <tex>S</tex> будет не оптимально.  Кроме того, мы можем предположить, что общее количество сделанной работы в <tex>(S \setminus \{j\}) \setminus S'</tex>, лежащих в интервале <tex>[r_{j}, r(S')]</tex>, {{---}} минимально, учитвая выполнимые множества <tex>S \subseteq \{1 \ldots j \}</tex> такие, что <tex>r(S'') \geqslant r, C(S'') \leqslant r(S'), w(S'') \geqslant w - w_{j} - w(S')</tex>. Пусть <tex>r, r'</tex> {{---}} даты появления <tex>r \leqslant r_{j} < r</tex>, и <tex>w''</tex> {{---}} некоторое целочисленное значение <tex>0 \leqslant w'' < W</tex>. За <tex>P_{j - 1}(r, r', w'')</tex> возьмем минимальное число сделанной работы в итервале <tex>[r_{j}, r']</tex>, учитвая выполнимые множества <tex>S \subseteq \{1 \ldots j \}</tex> такие, что <tex>r(S'') \geqslant r, C(S'') \leqslant r', w(S'') \geqslant w''</tex>. Если таких выполнимых множеств нет, то <tex>P_{j - 1}(r, r', w'') = \infty</tex>. Используя данную запись, количество времен доступнух для обработки работы <tex>j</tex> в интервале <tex>[r_j, r(S')]</tex> записывается формулой:<tex>(r(S') - r_j) - P_{j - 1}(r, r(S'), w - w_j - w(S'))</tex>. Количество готовности работы (какое количество уже сделано) <tex>j</tex> после времени:<tex>\max(0, p_j - (r(S') - r_j) + P_{j - 1}(r, r(S'), w - w_j - w(S'))</tex>. И время выполнения последней работы <tex>j</tex> из <tex>S</tex>:<tex>C_j(r,w) = \min\limits_{r', w'} \{ C_{j - 1}(r', w') + \max \{ 0, p_j - r' + r_j + P_{j - 1}(r, r', w - w_j - w' \} \}</tex>. === Конечная формула ===Собирая все написаное выше, приходим к рекуррентной формуле: :<p><tex>C_{j}(r, w) = \min\left \{\begin{array}{ll} C_{j - 1}(r, w) \\\max \{r_j, C_{j - 1}(r, w - w_j) \} + p_j \\\min\limits_{r', w'} \{ C_{j - 1}(r', w') + \max \{ 0, p_j - r' + r_j + P_{j - 1}(r, r', w - w_j - w' \} \} \end{array} \right. </tex></p> В этой формуле внутренняя минимизация берется по всем различным датам появления <tex>r' > r_j</tex> таких, что <tex>r' = r(S') \in \{ r1 \ldots r_{j - 1} \} </tex> и целочисленным значениям <tex>w'</tex>, <tex>0 \leqslant w' < w - w_j</tex>. Важно, что формула корректна только в том случае, если правая часть не превышает <tex>d_j</tex> и, если это не так, то <tex> C_{j}(r, w) = \infty</tex>. Рассмотрим, как посчитать значения <tex>P_{j - 1}(r, r', w'')</tex> для <tex>r \leqslant r_j < r'</tex> и <tex>0 \leqslant w'' < W</tex>. Если <tex>w'' = 0</tex>, то <tex>P_{j - 1}(r, r', w'') = 0</tex>. Иначе значение <tex>P_{j - 1}(r, r', w'')</tex> можно посчитать, используя непустое множество <tex>S'' \subseteq \{ 1 \ldots j - 1\}</tex>. Если <tex>r (S'') > r</tex>, то<tex>P_{j - 1}(r, r', w'') = P_{j - 1}(r(S''), r', w'')</tex>. Кроме того, в общем случае, заметим, что выполнятся:<tex>P_{j - 1}(r, r', w'') \leqslant P_{j - 1}(r^+, r', w'')</tex>.Где за <tex>r^+</tex> берется наименьшая дата появления, меньшая чем <tex>r</tex>, если такая существует. Если <tex>r(S'') = r</tex>, то пусть <tex>S' \subseteq S''</tex> будет блоком <tex>S''</tex> таким, что <tex>r(S') = r</tex>. Можно предположить, что <tex>C(S') = C_{j - 1}(r, w(S'))</tex>. Следовательно, общее количество сделанной работы из <tex>S'</tex> в интервале <tex>[r_j, r']</tex> будет равно:<tex>\max \{ 0, C_{j - 1}(r, w(S')) - r_j \} </tex>. Пусть <tex>r''</tex> будет наименьшей датой появления, меньшей или равной <tex>C_{j - 1}(r, w(S'))</tex>. Тогда общее количество сделанной работы в <tex>S'' \setminus S' </tex> в интервале <tex>[r_j, r']</tex> будет равно <tex>P_{j - 1}(r'', r', w'' - w(S'))</tex>. Следовательно, общее количество сделанной работы в <tex>S''</tex> в интервале <tex>[r_j, r']</tex> будет равно:<tex>\max \{ 0, C_{j - 1}(r, w(S')) - r_j\} + P_{j - 1}(r'', r', w'' - w(S'))</tex>. Правая часть выражения должна быть минимальной для множеств <tex>S', S'' \setminus S'</tex> и <tex>r(S') = r, C(S') \leqslant r( S'' \setminus S') = r'', w(S') + w( S'' \setminus S') = w''</tex>. Собирая все вместе, получим формулу:<p><tex>P_{j - 1}(r, r', w'') = \min\left \{\begin{array}{ll} P_{j - 1}(r^+, r', w'') \\\min\limits_{0 < w' \leqslant w''} \{ \max \{ 0, C_{j - 1}(r, w') - r_j \} + P_{j - 1}(r'', r', w'' - w')\} \end{array} \right. </tex></p> С начальными значениями:: <tex>P_{j - 1}(r, r', 0) = 0</tex> для <tex>j = 1 \ldots n</tex>: <tex>P_{0}(r, r', w'') = \infty</tex> для <tex>w'' > 0\ldots n</tex> Максимальный вес вычислимого множества может быть посчитан с помощью нахождения максимального значения <tex>w</tex> такого, что <tex>C_n(r_{\min},w)</tex> {{---}} конечно. === Ассимптотика ===На каждой из <tex>n</tex> итераций для <tex>j = 1 \ldots n </tex> существует <tex>O(k^2W)</tex> вычислямых значений <tex>P_{j - 1}(r, r', w'')</tex>, по одному на каждую комбинацию из <tex>r, r', w''</tex>. По представленной выше формуле, каждое значение <tex>P_{j - 1}(r, r', w'')</tex> находится с помощью минимизации из <tex>O(W)</tex> выборов <tex>w' < w''</tex>. Следовательно, время, требуемое для вычисления значений <tex>P_{j - 1}(r, r', w'')</tex>, ограниченно <tex>O(k^2W^2)</tex> на каждой итерации. Всего нам нужно посчитать <tex>O(kW)</tex> значений <tex>C_j(r,w)</tex>, по одному на каждую комбинацию <tex>r</tex> и <tex>w</tex>. Из формулы, приведенной для вычисления <tex>C_j(r,w)</tex>, каждое значение <tex>C_j(r,w)</tex> считается с помощью минимизации <tex>O(kW)</tex> выборов <tex>r', w'</tex>. Следовательно, время, требуемое для вычисления значений <tex>C_j(r,w)</tex> на каждой итерации, ограниченно <tex>O(k^2W^2)</tex>. Максимальный вес вычислимого множества может быть посчитан с помощью нахождения максимального значения <tex>w</tex> такого, что <tex>C_n(r_{\min},w)</tex> {{---}} конечно. Сделать это мы можем за <tex>O(W)</tex>. Итоговая сложность составляет <tex>O(nk^2W^2)</tex>. Чтобы создать вычислимое множество с максимальным весом, мы считаем характеристический вектор, учитывая значения <tex>P_{j - 1}(r, r', w'')</tex> и <tex>C_j(r,w)</tex>. Вычисляем веторы за <tex>O(n^2k^2W)</tex>, это значение меньше, чем <tex>O(nk^2W^2)</tex>. === Специальные случаи ===Если времена появления и дедлайны идут в одинаковом порядке, то есть <tex>r_1 \leqslant r_2 \leqslant \ldots \leqslant r_n</tex> и <tex>d_1 \leqslant d_2 \leqslant \ldots \leqslant d_n</tex>, то второй случай никогда не возникает. В этом случае, формула для вычисления <tex>C_j(r,w)</tex> может быть упрощена::<p><tex>C_{j}(r, w) = \min\left \{\begin{array}{ll} C_{j - 1}(r, w) \\\max \{r_j, C_{j - 1}(r, w - w_j) \} + p_j \end{array} \right. </tex></p>Либо, если мы примем <tex>C_{j}(w) = C_{j}(r_{\min}, w)</tex>, то::<p><tex>C_{j}(w) = \min\left \{\begin{array}{ll} C_{j - 1}(w) \\\max \{r_j, C_{j - 1}(w - w_j) \} + p_j \end{array} \right. </tex></p> Отсюда следует, что мы делаем <tex>O(nW)</tex> вычислений в этом случае, когда максимальный вес вычислимого множества <tex>w</tex> такой, что <tex>C_{n}(w)</tex> {{---}} конечно. В случае, если все веса одинаковы, но время уменьшается до <tex>O(n^2)</tex>. Когда все времена появления работ равны нулю, рекурретная формула упрощается до:<tex>C_j(w) = \min \{ C_{j - 1}(w), C_{j - 1}(w - w_{j}) + p_j\} </tex> Отсюда следует альтернативное решение для задачи [[1sumwu|<tex>1 \mid\mid \sum w_j U_j</tex>]], которое работает за <tex>O(n\sum w_j)</tex>. ==См. также==*[[1precpmtnrifmax|<tex>1 \mid prec,pmtn,r_i \mid f_{max}</tex>]]*[[1sumwu| <tex>1 \mid\mid \sum w_i U_i</tex>]] ==Примечания== <references />
==Источники информации==
1632
правки

Навигация