1632
правки
Изменения
м
'''Утверждения:'''{{Утверждение|statement= Существует алгоритм, который за полиномиальное время проверяет, что формулу, заданную в форме Крома, можно удовлетворить.}}{{main|2SAT}}
*Существует алгоритм, который за полиномиальное время проверяет, что функцию, заданную в форме Крома можно удовлетворить (т.е КНФ в форме Крома не является тождественно равной <tex>0</tex>).
Данный алгоритм подробно описан в статье о выполнимости булевых формул, заданных {{Утверждение|statement=Функцию <tex>F</tex> можно задать в форме Крома<tex> \iff </tex> выполнено следующее следствие : [[2SAT]].<tex> F(x_1, \ldots, x_n)=F(y_1, \ldots, y_n)=F(z_1, \ldots, z_n)=1 \Rightarrow</tex> <tex>F(\langle x_1, y_1, z_1 \rangle, \langle x_2, y_2, z_2 \rangle, \ldots, \langle x_n, y_n, z_n \rangle)</tex>}}
*Функцию <tex>F</tex> можно задать в форме Крома <tex> \iff </tex> выполнено следующее следствие: <tex> F(x_1, ..., x_n)=F(y_1, ..., y_n)=F(z_1, ..., z_n)=1 \Rightarrow</tex> <tex>F(\langle x_1, y_1, z_1 \rangle, \langle x_2, y_2, z_2 \rangle, ..., \langle x_n, y_n, z_n \rangle)</tex> = КНФ в форме Хорна ==
Любую формулу можно представить в виде КНФ {{Утверждение|statement= Существует алгоритм, который за полиномиальное время проверяет, что функцию, заданную в форме Хорна, можно удовлетворить. Для этого формулу необходимо преобразовать в конъюнкцию элементарных дизъюнкций и далее каждую дизъюнкцию представить в форме дизьюнкта Хорна|proof= Далее будет приведено доказательство, предлагающее алгоритм решения.
|about= В данном утверждении будет приведено доказательство, предлагающее алгоритм|statement='''Существует алгоритм, который за полиномиальное время проверяет, что функцию, заданную в форме Хорна можно удовлетворить.'''|proof=*Шаг 1. Попробуем найти в данной формуле одиночно стоящие переменные. Например, для формулы Функцию <tex> x \wedge (x \vee \neg y \vee \neg z) F</tex> такой переменной является <tex>x</tex>. Если такие переменные существуют, то им надо присвоить значение <tex> 1 </tex>, если переменная входит без отрицания и <tex>0</tex>, если переменная входит с отрицанием, так как можно задать в конъюнкции они должны дать форме Хорна <tex>1 \iff </tex>. Заметим, что если какая-либо скобка после этого обратилась в выполнено следующее следствие:<tex> 0 </tex>F(x_1, то решения не существует.*Шаг 2. Идем по скобкам и рассматриваем все переменные\ldots, встречающиеся более одного раза. Если переменная входит и без отрицания и с отрицаниемx_n)=F(y_1, то присваиваем ей значение <tex>1</tex>. Если переменная входит всегда без отрицаний\ldots, то присваиваем ей значение <tex>y_n)=1</tex> и <tex>0</tex> \Rightarrow F(x_1 \wedge y_1, если всегда входит с отрицаниями. *Шаг 3. Присваиваем всем оставшимся переменным <tex>1</tex>, если переменная входит без отрицания и <tex>0</tex> иначе. Если после данного этапа какая-либо скобка равна <tex>0</tex>, то данная формула не разрешима.* Если одиночно стоящих переменных в данном выражении нет, то всем переменным надо присвоить значение <tex> 0 </tex> и булева формула разрешится. Это следует из того, что в каждом дизъюнкте есть хотя бы одна переменная с отрицанием, подставив в нее значение <tex>0</tex> мы получим <tex> 1</tex> в результате дизъюнкции. Сделав так для каждой скобки, мы получим выражение вида: <tex>1x_2 \wedge 1 y_2, \wedge ... ldots, x_n \wedge 1</tex>, что в конечном итоге даст нам <tex> 1y_n)</tex>.
*Функцию <tex>F</tex> можно задать в форме Хорна <tex> \iff </tex> выполнено следующее следствие:
<tex> F(x_1, ..., x_n)=F(y_1, ..., y_n)=1 \Rightarrow F(x_1 \wedge y_1, x_2 \wedge y_2, ..., x_n \wedge y_n)</tex>
rollbackEdits.php mass rollback
__TOC__ Рассмотрим две формы, с помощью которых можно представить формулы, заданные в [[Определение булевой функции#Представление булевых функций|конъюнктивной нормальной форме]], то есть имеющей вид конъюнкции выражений в скобках, каждое из которых представляет собой дизъюнкцию одного или нескольких литералов. Эти две формы интересны тем, что для них Для двух этих форм существует алгоритм, который может за полиномиальное время проверить, существует ли набор аргументов, на которых данная функция будет принимать значение <tex>1</tex>, в то время, как для обычной функции, не представленной данной формой, эта задача является [[Примеры NP-полных языков. Теорема Кука|<tex>\mathrm{NP}</tex>-полной]]. Этот факт интересен потому, что, имея большое количество функций, которые можно свести к форме Хорна или Крома, мы сможем гарантированно вычислять необходимое нам условие за полиномиальное время. Поэтому с помощью применения данных форм мы сможем решать очень быстро целый класс задач, например, задачи на графах, которые, как известно, имеют большое практическое применение.
== КНФ в форме Крома ==
{{Определение
|definition=
'''Конъюнктивная нормальная форма '''(КНФангл. ''conjunctive normal form, CNF'') '''в форме Крома (, 2-КНФ)<ref>[https://en.wikipedia.org/wiki/2-satisfiability Wikipedia {{---}} 2-satisfiability]</ref>''' (англ. ''2-CNF'') {{---}} это конъюнкция выражений в скобках, каждое из которых представляет собой дизъюнкцию нескольких ровно двух литералов, количество которых не превышает двух.}}
'''Пример :'''
<tex>(x_1\vee\overline x_2) \wedge (\overline x_1 \vee x_3 ) \wedge (\overline x_3 \vee x_2 ) \wedge (\overline x_1 \vee \overline x_2) \wedge... \ldots </tex>
{{Определение
|definition=
'''Конъюнктивная нормальная форма '''(КНФангл. ''conjunctive normal form, CNF'')'''в форме Хорна<ref>[https://en.wikipedia.org/wiki/Horn_clause Wikipedia {{---}} Horn clause]</ref>''' (англ. ''Horn clause'') {{---}} это конъюнкция выражений в скобках, каждое из которых представляет собой дизъюнкцию литералов, в которой присутствует не более одного литерала без отрицания.}}
'''Пример:'''
<tex> (\overline x_1 \vee \overline x_2 \vee ... \ldots \vee \overline x_n ) \wedge (x_1 \vee \overline x_2 \vee ... \ldots \vee \overline x_n)\wedge ...\ldots</tex>
Каждая скобка представляет собой Дизъюнкт Хорна<ref>[https://ru.wikipedia.org/wiki/%D0%94%D0%B8%D0%B7%D1%8A%D1%8E%D0%BD%D0%BA%D1%82_%D0%A5%D0%BE%D1%80%D0%BD%D0%B0 Википедия {{---}} Дизъюнкт Хорна]</ref>.
*'''Шаг 1. Одиночное вхождение переменных.''' Найдем в данной формуле одиночно стоящие переменные. Например, для формулы <tex> x \wedge (x \vee \neg y \vee \neg z) </tex> такой переменной является <tex>x</tex>.
*# Присутствуют одиночно стоящие переменные.
*#:Присвоим всем таким переменным значение <tex> 1 </tex>, если переменная входит без отрицания и <tex>0</tex> иначе, так как в конъюнкции они должны дать <tex>1</tex>. Заметим, что если какая-либо скобка после этого обратилась в <tex> 0 </tex>, то решения не существует.
*# Отсутствуют одиночно стоящие переменные.
*#:Всем переменным надо присвоить значение <tex> 0 </tex> и булева формула разрешится. Это следует из того, что в каждом дизъюнкте есть хотя бы одна переменная с отрицанием, подставив в нее значение <tex>0</tex> мы получим <tex> 1</tex> в результате дизъюнкции. В итоге мы получим выражение вида: <tex>1\wedge 1 \wedge \ldots \wedge 1</tex>, что в результате даст нам <tex> 1</tex>. В таком случае дальнейшие шаги выполнять не нужно.
*'''Шаг 2.'''
*:Опустим одиночно стоящие переменные и скобки, в которых значение стало равным <tex>1</tex>. Перейдём к <tex>1</tex> шагу алгоритма. По определению формы Хорна, в каждой из скобок, где мы опустили переменную, не больше <tex>1</tex> переменной без отрицания. Либо какая-то из переменных внутри скобки будет иметь отрицание, т.е. при подстановке <tex>0</tex> станет равна <tex>1</tex>, либо мы рассмотрим переменную без отрицания как отдельно стоящую переменную. Значит <tex>1</tex> шаг алгоритма выполнится верно. Будем проделывать алгоритм, начиная сначала, пока <tex>1</tex> шаг не найдёт ответ.
Обозначим за <tex>N</tex> число вхождений переменных в формулу.
Итерация состоит из шагов, каждый из которых выполняется за <tex>O(N)</tex>. Всего итераций будет не больше <tex>N</tex>, так как если первый шаг не завершил алгоритм, то уменьшил размер формулы на одно вхождение. Итого, асимптотика алгоритма составляет <tex>O(N^2)</tex>.
}}
{{Утверждение
}}
== См.также ==
* [[СКНФ]]
* [[2SAT]]
* [[ДНФ]]
==Примечания==
==Источники информации==
*[https://en.wikipedia.org/wiki/Horn_clause| Conjunctive_normal_form Wikipedia {{---}} Horn clauseCNF]*[https://en.wikipedia.org/wiki/2-satisfiability| Wikipedia {{---}} 2-satisfiability]
[[Категория: Дискретная математика и алгоритмы]]
[[Категория: Булевы функции ]]