Изменения
Нет описания правки
Диофант искал решение этих уравнений в рациональных числах, Гильберт спрашивал про решение диофантовых уравнений в целых числах.
В современной терминологии десятая проблема Гильберта является примером ''массовой проблемы''<ref>Матиясевич Ю.В. Десятая проблема Гильберта. — М.: Физматлит, 1993. - Математическая логика и основания математики {{---}} с.8.</ref>. Массовая проблема состоит из счетного количества вопросов на каждый из которых нужно дать ответ {{---}} да или нет. В данном случае эти вопросы параметризуются диофантовыми уравнениями и нужно сказать: да, данное диофантово уравнение имеет решение или нет, данное уравнение не имеет решения. И суть массовой проблемы состоит в том, что нужно найти единый универсальный метод, который позволял бы ответить на любой из этих вопросов. Среди двадцати трех «Математических проблем» Гильберта десятая является единственной массовой проблемой и она может рассматриваться, как проблема информатики. Сегодня мы знаем, что десятая проблема Гильберта решения не имеет. Это означает, что она не разрешима, как массовая проблема.
{{Теорема
}}
Аббревиатура в названии последней теоремы образована из первых букв фамилий математиков Мартина Девиса (англ. Martin ''Davis''), Хилари Патнэма (англ. ''Hilary Putnam''), Джулии Робинсон (англ. ''Julia Robinson'') и Юрия Матиясевича. Подробное доказательство неразрешимости десятой проблемы Гильберта можно прочитать здесь <ref>
Davis Martin Hilbert's tenth problem is unsolvable {{---}} Amer. tex. Monthly., V.80, №3 1973.{{---}}p. 233–269.</ref>. <ref>Манин Ю. И. Вычислимое и невычислимое,— М.: Советское Радио, 1980,.{{---}}c. 46-64.</ref>.
Пусть дано множество <tex>M</tex> натуральных чисел и нужно найти алгоритм, который по каждому натуральному <tex>n</tex> определяет, принадлежит это <tex>n</tex> множеству <tex>M</tex> или нет.Такой алгоритм существует тогда и только тогда, когда множество <tex>M</tex> разрешимо. Для отрицательного решения десятой проблемы Гильберта достаточно было доказать диофантовость каждого [[Перечислимые языки|перечислимого множества]], то есть по каждому перечислимому множеству <tex>M</tex> уметь строить такое диофантово уравнение, <tex>P(y,x_1\ldots x_k)=0</tex>, которое имело бы натуральные решения <tex>x_1\ldots x_k</tex> для всех <tex>y</tex>, принадлежащих <tex>M</tex> и только для таких <tex>y</tex>. Тогда, взяв в качестве <tex>M</tex> перечислимое, но [[Разрешимые (рекурсивные) языки # Примеры неразрешимых множеств | неразрешимое множество]], можно было бы получить, что для соответствующего уравнения <tex>P(y,x_1\ldots x_k)=0</tex> нет общего алгоритма, который по каждому натуральному <tex>y</tex> давал бы ответ на вопрос о существовании у этого уравнения натуральных решений. Если бы этот алгоритм существовал, то можно было бы за конечное число шагов узнать, имеет ли уравнение <tex>P(0,x_1\ldots x_k)=0</tex> решение, то есть принадлежит ли число <tex>0</tex> множеству <tex>M</tex>, имеет ли уравнение <tex>P(1,x_1\ldots x_k)=0</tex> решение и так далее. Получилось бы, что существует алгоритм, который по каждому натуральному <tex>y</tex> за конечное число шагов определяет, принадлежит <tex>y</tex> множеству <tex>M</tex> или нет. Тогда, в соответствии с тезисом Черча, множество <tex>M</tex> было бы разрешимым вопреки выбору этого множества.