30
правок
Изменения
Нет описания правки
=== Перестановки ===
'''Перестановки<ref>[httphttps://wwwru.mathelpwikipedia.spb.ruorg/book2/tv3.htmwiki/%D0%9F%D0%B5%D1%80%D0%B5%D1%81%D1%82%D0%B0%D0%BD%D0%BE%D0%B2%D0%BA%D0%B0 Википедия — Перестановки]</ref>''' — это упорядоченный набор чисел <tex>1, 2,\ldots, n</tex>, обычно трактуемый как биекция на множестве <tex>\{ 1, 2,\ldots, n \}</tex>, которая числу <tex>i</tex> ставит соответствие <tex>i</tex>-й элемент из набора. Количество перестановок равно <tex>P_n = n!</tex>. Получить эту формулу можно следующим образом: поставим один из <tex>n</tex> элементов на первое место, далее поставим на второе один из <tex>n - 1</tex> оставшихся элементов,... один из <tex>1</tex> элемента на последнее. Всего таких выборов можно совершить <tex>n \times (n - 1) \times ... \times 1 = n!</tex>.
=== Размещения ===
'''Размещение''' <ref>[https://ru.wikipedia.org/wiki/%D0%A0%D0%B0%D0%B7%D0%BC%D0%B5%D1%89%D0%B5%D0%BD%D0%B8%D0%B5 Википедия — Размещения]</ref> из <tex>n</tex> по <tex>k</tex> — это упорядоченный набор из <tex>k</tex> различных элементов некоторого <tex>n</tex>-элементного множества. Таких наборов <tex>A^{k}_n = \frac{n!}{(n - k)!}</tex>. Выведем формулу подобно тому, как выводили для '''перестановок''': на первое место можно поставить один из <tex>n</tex> элементов, на следующее один из <tex>n - 1</tex>,... и на последнее один из <tex>n - k + 1</tex>. Всего получится <tex>n \times (n - 1) \times ... \times (n - k + 1) = \frac{n!}{(n - k)!}</tex>.
=== Сочетания ===
'''Сочетания<ref>[httphttps://wwwru.mathelpwikipedia.spb.ruorg/book2/tv3.htmwiki/%D0%A1%D0%BE%D1%87%D0%B5%D1%82%D0%B0%D0%BD%D0%B8%D0%B5 Википедия — Сочетания]</ref>''' из <tex>n</tex> по <tex>k</tex> — это набор <tex>k</tex> элементов, выбранных из данных <tex>n</tex> элементов. Количество таких наборов вычисляется по формуле <tex>C^{k}_n = \frac{n!}{k!(n - k)!}</tex>. Выведем данную формулу из формулы размещений, а именно заметим, что в размещениях порядок элементов имеет значение, а в сочетаниях нет. Это значит, что наборы <tex>\{1, 2\}</tex> и <tex>\{2, 1\}</tex> эквивалентны. То есть в размещениях любой вариант сочетания повторяется столько же раз, сколько можно сделать перестановок для <tex>k</tex> мест. Тогда <tex dpi = "150">C^{k}_n = \frac{A^{k}_n}{k!} = \frac{n!}{k!(n - k)!}</tex>.
=== Разбиение на неупорядоченные слагаемые ===
[[Нахождение количества разбиений числа на слагаемые | '''Разбиение''' числа '''на неупорядоченные слагаемые''' ]] — это представление числа <tex>n</tex> в виде суммы слагаемых. Всего таких разбиений:
:<p>
<tex>P_{n,k} = \left \{
=== Разбиение на подмножества ===
[[Числа Стирлинга первого рода | '''Разбиение''' множества <math>X</math> '''на подмножества''' ]] — это семейство непустых множеств <math>\{U_{\alpha}\},{\alpha \in A}</math>, где <math>A</math> — некоторое множество индексов, если:
# <math>U_{\alpha} \cap U_{\beta} = \emptyset</math> для любых <math>\alpha, \beta \in A</math>, таких что <math>\alpha \not= \beta</math>;
# <math>X = \bigcup\limits_{\alpha \in A} U_{\alpha}</math>.
Подробнее можно прочитать на странице о [[Числа Стирлинга второго рода | числах Стирлинга второго порядка]].
== Источники Примечания ==
<references/>
[[Категория: Дискретная математика и алгоритмы]]
[[Категория: Комбинаторика ]]