Изменения

Перейти к: навигация, поиск

Обсуждение участницы:Анна

1248 байт добавлено, 11:32, 15 декабря 2016
Нет описания правки
== Примеры доказательств ==
=== Язык <tex>half(L)</tex> ===
{{Определение
|definition = Определим <tex>half(L)</tex> как множество первых половин цепочек языка <tex>L</tex>, то есть множество <tex>\{ w \mid </tex> существует <tex>x</tex>, для которой <tex>wx \in L</tex>, причем <tex>|w| = |x| \}</tex>. }}
Например, если <tex>L = \{ \varepsilon, 0010, 011, 010110 \}</tex>, то <tex>half(L) = \{ \varepsilon, 00, 010 \}</tex>. Заметим, что цепочки нечетной длины не влияют на <tex>half(L)</tex>.
{{Определение
|definition = Определим <tex>cycle(L)</tex> как множество <tex>\{ w \mid </tex> цепочку <tex>w</tex> можно представить в виде <tex>w = xy</tex>, где <tex>yx \in L \}</tex>. }}
Например, если <tex>L = \{ 01, 011 \}</tex>, то <tex>cycle(L) = \{ 01, 10, 011, 110, 101 \}</tex>.
{{Утверждение
Теперь по индукции не сложно доказать, что <tex>\delta'(q_0', x) = (\delta(q_0, x), S_n)</tex>, где <tex>|x| = n</tex>. По определению множества терминальных вершин, автомат <tex>M'</tex> допускает строку <tex>x</tex> тогда и только тогда, когда <tex>\delta(q_0, x) \in S_n</tex>. Следовательно, автомат <tex>M'</tex> допускает язык <tex>half(L)</tex>.Таким образом, мы построили ДКА, который допускает язык <tex>half(L)</tex>. Следовательно, данный язык является регулярным.
}}
=== Язык <tex>alt(L, M)</tex> ===
{{Определение
|definition = Пусть <tex>w = w_1 w_2 \dots w_n</tex> и <tex>x = x_1 x_2 \dots x_n</tex>. Определим <tex>alt(w, x) = w_1 x_1 w_2 x_2 \dots w_n x_n</tex>. Распространим это определение на языки следующим образом: пусть <tex>L</tex> и <tex>M</tex> {{---}} два языка над одним алфавитом <tex>\Sigma</tex>. Тогда <tex>alt(L, M) = \{ alt(w, x) \mid |w| = |x|, w \in L, x \in M \}</tex>.}}
{{Утверждение
|id = st4
|statement = Пусть <tex>L</tex> и <tex>M</tex> {{---}} регулярные языки. Тогда <tex>alt(L, M)</tex> также является регулярным.
|proof = Так как <tex>L</tex> и <tex>M</tex> {{---}} регулярные языки, то существуют ДКА <tex>D_L = \langle \Sigma , Q_L , q_{0L} , F_L , \delta_L \rangle </tex>, распознающий язык <tex>L</tex>, и <tex>D_M = \langle \Sigma , Q_M , q_{0M} , F_M , \delta_M \rangle </tex>, распознающий <tex>M</tex>.
}}
=== Язык <tex>cycle(L)</tex> ===
{{Определение
|definition = Определим <tex>cycle(L)</tex> как множество <tex>\{ w \mid </tex> цепочку <tex>w</tex> можно представить в виде <tex>w = xy</tex>, где <tex>yx \in L \}</tex>. }}
Например, если <tex>L = \{ 01, 011 \}</tex>, то <tex>cycle(L) = \{ 01, 10, 011, 110, 101 \}</tex>.
 
{{Утверждение
|id = st5
|statement =
Пусть <tex>L</tex> {{---}} регулярный язык. Тогда язык <tex>cycle(L)</tex> также регулярен.
|proof =
[[Файл:Enfa_before.jpg|leftright|thumb|240px380px|Рис. 1. Разбиение автомата.]][[Файл:Enfa-after.jpg|right|thumb|240px380px|Рис. 2. Перестроение.]]
Так как <tex>L</tex> {{---}} регулярный язык, то существует допускающий его ДКА <tex>M = \langle \Sigma , Q , q_0 , F , \delta \rangle </tex>. Построим из <tex>M</tex> недетерминированный автомат с <tex>\varepsilon-</tex>переходами следующим образом: рассмотрим состояние <tex>q \in Q</tex>, из которого есть переходы в другие состояния (то есть начиная с <tex>q</tex> можно построить непустое слово, заканчивающееся в терминальной вершине). Тогда если какое-то слово проходит через это состояние, оно может быть зациклено таким образом, что его суффикс, начинающийся с <tex>q</tex>, станет префиксом нового слова, а префикс, заканчивающийся в <tex>q</tex> {{---}} суффиксом. Разделим автомат на две части <tex>A_1</tex> и <tex>A_2</tex> такие, что <tex>A_1</tex> будет содержать все вершины, из которых достижима <tex>q</tex>, а <tex>A_2</tex> {{---}} все вершины, которые достижимы из <tex>q</tex> (см. рис. 1). Заметим, что каждая вершина может содержаться в обеих частях одновременно, такое может случиться, если автомат <tex>M</tex> содержит циклы. Теперь перестроим автомат так, что он будет принимать слова "зацикленные" вокруг <tex>q</tex>, то есть начинающиеся с <tex>q</tex> и после достижения терминальной вершины продолжающиеся с <tex>q_0</tex> (см. рис. 2). Для этого стартовой вершиной сделаем <tex>q</tex> и построим от нее часть <tex>A_2</tex>. Теперь добавим состояние <tex>q_0</tex> и соединим с ним все терминальные состояния из <tex>A_2</tex> с помощью <tex>\varepsilon-</tex>переходов. Далее построим от <tex>q_0</tex> часть <tex>A_1</tex>. Добавим вершину <tex>q'</tex>, эквивалентную <tex>q</tex>, и сделаем ее терминальной. Данный автомат принимает слова, зацикленные вокруг выбранной вершины <tex>q</tex>. Мы хотим, чтобы автомат принимал слова, зацикленные вокруг любой такой <tex>q</tex>. Для этого создадим новую стартовую вершину <tex>q_0'</tex> и свяжем ее <tex>\varepsilon-</tex>переходами со всеми перестроенными автоматами (зацикленными вокруг всех подходящих <tex>q</tex>), в том числе и с изначальным автоматом. Построенный автомат допускает язык <tex>cycle(L)</tex>, следовательно, данный язык является регулярным.
}}
[[Файл:Ex_1_before.jpg|left|thumb|240px260px|Рис. 3. Автомат, принимающий язык <tex>L</tex>.]][[Файл:Ex_1_after.jpg|right|thumb|300px380px|Рис. 4. Автомат, принимающий язык <tex>cycle(L)</tex>.]]
Для лучшего понимания алгоритма перестроения автомата рассмотрим пример.<br>
На рис. 3 представлен автомат, допускающий язык <tex>L = \{ ab, abb, ac \}</tex>. На рис. 4 показано, как этот автомат был перестроен. Были добавлены части, зацикленные относительно вершин <tex>2</tex> и <tex>3</tex>. Появилась новая стартовая вершина <tex>0</tex>, которая связана <tex>\varepsilon-</tex>переходами с изначальным автоматом и его измененными версиями. Данный автомат распознает язык <tex>cycle(L) = \{ ab, abb, ac, ba, bba, ca, bab \}</tex>: первые три слова распознает первая часть, которая совпадает с изначальным автоматом; следующие три {{---}} вторая, перестроенная относительно вершины <tex>2</tex>; последнее слово распознает третья часть, зацикленная относительно вершины <tex>3</tex>.
577
правок

Навигация