Изменения

Перейти к: навигация, поиск
Теорема о мощности минимального вершинного покрытия и максимального паросочетания
В <tex>R^+</tex> не насыщенных паросочетанием вершин быть не может, т.к. иначе в <tex>G</tex> существует дополняющая цепь, что противоречит максимальности построенного паросочетания.
В <tex>L^-</tex> свободных вершин быть не может, т.к. все они должны находиться в <tex>L^+</tex>. Тогда т.к. ребер из паросочетания между <tex>R^+</tex>
и <tex>L^-</tex> нет, то каждому ребру максимальным максимального паросочетания инцидентна ровно одна вершина из <tex>L^- \cup R^+</tex>.
Тогда <tex>|L^- \cup R^+|</tex> равна мощности максимального паросочетания. Множество вершин <tex>L^- \cup R^+</tex> является минимальным вершинным покрытием. Значит мощность максимального паросочетания равна мощности минимального вершинного покрытия.
}}
Анонимный участник

Навигация