243
правки
Изменения
→Поиск максимального поддерева, являющегося BST, в заданном двоичном дереве: вот это 10
|definition = Найти в данном дереве максимальное из поддеревьев поиска.
}}
Будем рассматривать каждую вершину дерева, предполагая, что она может являться корнем максимального поддерева поиска. Найдём для каждой из них количество всех вершин, которые могут находиться в таком поддереве. Максимальный из результатов, получаемых на каждом шаге, будем запоминать. Вместе с максимумом будем запоминать и соответствующую ему вершину. После того, как мы обошли всё дерево и нашли корень дерева поиска с наибольшим количеством вершин, запускаем процедуру при помощи обхода <tex>\mathrm{preorderTraversal}</tex>, выводящую выводим все вершины на экран.
'''Node''' root()
Разберём алгоритм на примере последовательности для приведённого выше дерева. Она выглядит так: ''8 2 1 4 3 5''. Сначала в корень записывается ''8''. Затем его левым сыном становится вершина с номером ''2'', а её левым сыном — ''1''. Следующее значение — ''4'' — уже нарушает убывающую подпоследовательность. Подберём для него вершину, где лежит значение, меньшее его, причём такая вершина максимальна (в противном случае он будет превосходить и прародителя, находясь в его левом поддереве, а это противоречит определению дерева поиска). Это узел с числом ''2''. Сделаем его правым сыном рассматриваемую вершину. Затем снова дадим левых потомков последней добавленной вершине, опять же, пока не найдём ключ, нарушающий порядок убывания. В нашем случае в дерево дописывается ''3''. Для следующего значения снова ищем родителя, для которого он станет правым сыном. Это значение равно ''4''. Добавляем ''5'' как правого сына для вершины ''4''. Итак, мы построили дерево.