243
правки
Изменения
→Пример 2
Найдем математическое ожидание этой величины
<tex>E(\xi^i)=0 \cdot p(\xi^i=0)+1 \cdot p(\xi^i=1)=p(s[i]=t[i])</tex> где <tex>s[i],t[i]</tex> {{---}} <tex>i</tex>-тые символы соответствующих строк.
Так как появление каждого символа равновероятно, то <tex>p(s[i]=t[i])=\dfrac{}{}{1pt}{0}{1}{k}</tex>.
Итоговый результат: <tex>E(\xi)={\sum_{i=1}^n \limits}E(\xi^i)=\dfrac{}{}{1pt}{01}{n}{k} </tex>
===Пример 3===