Изменения

Перейти к: навигация, поиск

Условная вероятность

113 байт добавлено, 03:16, 1 июня 2017
Нет описания правки
|id = def1
|definition =
'''Условной Условная вероятность ''' (англ. ''conditional probability''):''' Пусть задано [[вероятностное пространство, элементарный исход, событие|вероятностное пространство]] <tex>(\Omega, P)</tex>. Условной вероятностью события <tex>A </tex> при условии, что произошло событие <tex>B</tex>, называется число
<tex>{P}(A \mid B) = </tex> <tex>\frac{{P}(A\cap B)}{{P}(B)}</tex>, где <tex>A, B \subset \Omega</tex>.}}
== Замечания ==
== Пример ==
Пусть имеется <tex>12 </tex> шариков, из которых <tex>5 </tex> {{---}} чёрные, а <tex>7 </tex> {{---}} белые. Пронумеруем чёрные шарики числами от <tex>1 </tex> до <tex>5</tex>, а белые {{---}} от <tex>6 </tex> до <tex>12</tex>. Случайным образом из мешка достаётся шарик. Требуется посчитать вероятность того, что шарик чёрный, если известно, что он имеет чётный номер.
Обозначим за <tex>A</tex> событие "достали чёрный шар" и за <tex>B</tex> событие "достали шар с чётным номером". Тогда <tex>P(B) = \frac{1}{2}</tex>, т. к. ровно половина шариков имеют чётный номер, а <tex>P(A \cap B) = \frac{2}{12} = \frac{1}{6}</tex>, т. к. только два шарика из двенадцати являются чёрными и имеют чётным номер одновременно.
195
правок

Навигация