37
правок
Изменения
Нет описания правки
|}
Заметим, что после шага 1, как и после шага 5, остаточные способности рёбер <math>e_1</math>, <math>e_2</math> и <math>e_3</math> имеют форму <math>r^n</math>, <math>r^{n+1}</math> and <math>0</math>, соответственно, для какого-то натурального <math>n</math>. Это значит, что мы можем использовать увеличивающие пути <math>p_1</math>, <math>p_2</math>, <math>p_1</math> и <math>p_3</math> бесконечно много раз, и остаточные пропускные способности этих рёбер всегда будут в той же форме.Полный поток после шага 5 равен <math>1 + 2(r^1 + r^2)</math>. За бесконечное время полный поток сойдётся к <math>\textstyle 1 + 2\sum_{i=1}^\infty r^i = 3 + 2r</math>, тогда как максимальный поток равен <math>2M + 1</math>. Таким образом, алгоритм не только работает бесконечно долго, но даже и не сходится к оптимальному решению.<ref>{{cite journal| title = The smallest networks on which the Ford-Fulkerson maximum flow procedure may fail to terminate | first = Uri | last = Zwick | journal = [[Theoretical Computer Science (journal)|Theoretical Computer Science]] | volume = 148 | issue = 1 | date = 21 August 1995 | pages = 165–170 | doi = 10.1016/0304-3975(95)00022-O}}</ref>
=== Пример медленной работы алгоритма Форда-Фалкерсона с использованием поиска в глубину по сравнению с реализацией, использующей поиск в ширину ===
При использовании поиска в ширину алгоритму потребуется всего лишь 2 шага.
== См. также ==
* [[Теорема Форда-Фалкерсона]]