195
правок
Изменения
Нет описания правки
'''Схемой Бернулли''' (англ. ''Bernoulli scheme'') называется последовательность независимых испытаний, в каждом из которых возможны лишь два исхода — «успех» и «неудача», при этом успех в каждом испытании происходит с одной и той же вероятностью <tex> p \in (0, 1)</tex> , а неудача {{---}} с вероятностью <tex> q = 1 - p </tex>.
}}
== Распределение Бернулли==
{{Определение
|definition=
'''Распределение Бернулли''' (англ. ''Bernoulli distribution'') {{---}} описывает ситуации, где "испытание" имеет результат "успех" либо "неуспех".
}}
[[Дискретная случайная величина | Случайная величина]] <tex>\xi</tex> с таким распределением равна числу успехов в одном испытании схемы Бернулли с вероятностью <tex>p</tex> успеха : ни одного успеха или один успех. Функция распределения <tex> \xi</tex> имеет вид
<tex>
F_{\xi}(x) = P(\xi < x) \begin{cases}
0, & x\leqslant 0 \\
1 - p, & 0 < x \leqslant 1\\
1, & x > 1
\end{cases}
</tex>
[[Файл:Img660.png]]
== Биномиальное распределение ==
|}
Обозначим через <tex> v_{n} </tex> число успехов, случившихся в <tex> n</tex> испытаниях схемы Бернулли. Эта случайная величина может принимать целые значения от <tex>0</tex> до <tex>n</tex> в зависимости от результатов испытаний. Например, если все <tex>n </tex> испытаний завершились неудачей, то величина <tex> v_{n} </tex> равна нулю.