Изменения
Нет описания правки
# Найдите асимптотическое поведение $\omega(\overline{C_n})$.
# Колесом $C_n + K_1$ называется граф, состоящий из цикла, содержащего $n$ вершин, и еще одной вершины $u$, причем все вершины цикла соединены с $u$. Найдите $\omega(C_n + K_1)$.
# Докажите, что каждый циклический путь нечетной длины содержит простой цикл.
# Докажите или опровергните, что объединение двух любых простых путей из вершины $u$ в вершину $v$ содержит цикл.
# Докажите, что граф связен тогда и только тогда когда для любого разбиения его множества вершин $V$ на два непустых непересекающихся множества $X$ и $Y$ существует ребро, соединяющее эти множества.
# Докажите, что в связном графе любые два самых длинных простых пути имеют общую вершину.
# Докажите или опровергните, что в связном графе все самые длинные простые пути имеют общую вершину.
# Обозначим как $\delta(G)$ минимальную степень вершины в графе. Докажите, что если в графе с $n$ вершинами $\delta(G) > (n - 1) / 2$, то он связен.
# Докажите, что либо граф $G$, либо его дополнение $\overline{G}$ связен.
# Будем говорить, что $G$ связан короткими путями, если между любыми двумя вершинами в $G$ есть путь длины не более 3. Докажите, что либо $G$, либо $\overline G$ связан короткими путями.
# Найдите максимальное число ребер в графе с $n$ вершинами, не содержащем четных простых циклов.
# Докажите, что граф с $n$ вершинами и $n + 4$ ребрами содержит два простых цикла, не имеющих общих ребер.
# Доказать или опровергнуть, что если ребро $uv$ - мост, то $u$ и $v$ - точки сочленения.
# Доказать или опровергнуть, что если $u$ и $v$ - точки сочленения, то $uv$ - мост.
# Какое максимальное число точек сочленения может быть в графе с $n$ вершинами?
# Рассмотрим отношение на рёбрах - $R$. $ab R cd$, если 1) $ab$ и $cd$ имеют общую вершину; 2) $ab$ и $cd$ лежат на цикле. Доказать, что вершинная двусвязность - это $R^*$.
# Доказать, что ребро $uv$ - мост тогда и только тогда, когда $uv$ вершинно двусвязно только с самим собой.
</wikitex>