Изменения

Перейти к: навигация, поиск

Список заданий по ДМ 2к 2017 осень

2742 байта добавлено, 18:05, 28 октября 2017
Нет описания правки
# Найдите максимальное $k$, что граф $K_k$ можно уложить на сфере с двумя ручками.
# Докажите, что для любого $m$ существует $k$, такое что граф с $K_k$ нельзя уложить на сфере с $m$ ручками.
# Посчитать хроматический многочлен цикла $C_n$
# Посчитать хроматический многочлен колеса $C_n + K_1$.
# Посчитать полного двудольного графа $K_{n,m}$.
# Докажите, что хроматический многочлен дерева равен $t(t-1)^n$.
# Докажите, что если хроматический многочлен графа равен $t(t-1)^n$, то граф является деревом.
# Приведите пример двух графов, которые не являются деревьями, не являются изоморфными и имеют одинаковые хроматические многочлены.
# Докажите, что если длина максимального простого нечетного цикла в $G$ есть $k$, то $\chi(G)\le k + 1$.
# Если степени вершин графа $G$ равны $d_1 \ge d_2 \ge \ldots \ge d_n$, то $\chi(G)\le \max\min\{i, d_i+1\}$.
# Если граф $G$ с $n$ вершинами содержит гамильтонов цикл, причем ему принадлежат не все ребра графа, то $\chi(G) \le 1 + n/2$.
# Хроматическое число конъюнкции $G_1\wedge G_2$ графов $G_1$ и $G_2$ двух графов не превосходит хроматических чисел этих графов.
# Докажите, что $K_{n+1}$ является единственным регулярным графом степени $n$, который имеет хроматическое число $n+1$.
# Рассмотрим связный граф $G$, не являющийся простым циклом нечетной длины, все простые циклы которого имеют одниковую четность. Докажите, что $\chi'(G)=\Delta(G)$.
# Доказать формулу Зыкова для хроматического многочлена графа $G$: $P_G(x)=\sum\limits_{i=1}^n pt(G,i)x^{\underline{i}}$, где $pt(G,i)$ — число способов разбить вершины $G$ на $i$ независимых множеств.
# Доказать формулу Уитни: пусть $G$ - обыкновенный $(n, m)$ - граф. Тогда коэффициент при $x^i$, где $1\le i\le n$ в хроматическом многочлене $P_G(x)$ равен $\sum \limits_{j=0}^{m}{(-1)^jN(i, j)}$, где $N(i, j)$ - число остовных подграфов графа $G$, имеющих $i$ компонент связности и $j$ рёбер.
</wikitex>
Анонимный участник

Навигация