Изменения

Перейти к: навигация, поиск

Числа Белла

271 байт добавлено, 21:26, 17 ноября 2017
Разделение набора
==Подсчет==
===Разделение набора===
[[File:Order.png|thumb|upright|Разбиения множеств могут быть расположены частично-упорядоченном виде. Каждое подмножество длины n использует одно из подмножеств длины<tex dpi="130">n-1</tex>.]]
[[File:XxxCircles.png|thumb|upright|52 разбиения множества из 5 элементов]]
[[File:Order.png|400px|Разбиения множеств могут быть расположены частично-упорядоченном виде. Каждое подмножество длины n использует одно из подмножеств длины <tex dpi="130">n-1</tex>.]] <tex dpi="130">B_n</tex> количество разбиений множества размера <tex dpi="130">n</tex>. Разбиение множества <tex dpi="130">S</tex> определяется как совокупность '''непустых, попарно непересекающихся подмножеств множества''' <tex dpi="130">S</tex>. Например, ''B''<subtex>3B_3 = 5</subtex>&nbsp;=&nbsp;5, потому что множество, состоящее их 3 элементов {''a'',&nbsp;''b'',&nbsp;''c''} может быть разделено 5 различным способами:
: {''a''}, {''b''}, {''c''}
: {''a'', ''b'', ''c''}.
<tex dpi="130">B_0</tex> является <tex>1</tex>, т.к. существует только одно возможное разбиение пустого множества. Каждый элемент пустого множества является непустым множеством и их объединение является пустым множеством. Таким образом, пустое множество может разбиваться только на само себя.
Как было обозначено выше, мы '''не рассматриваем ни порядок подмножеств, ни порядок элементов в каждом их них '''. Это означает, что данные разбиения являются идентичными:
:{''b''}, {''a'', ''c''}
288
правок

Навигация