Изменения

Перейти к: навигация, поиск

ДНФ

152 байта добавлено, 23:07, 23 декабря 2017
Добавлены разделы для медианы от трех и пяти аргументов
== Пример построения СДНФ для медианы==
=== Построение СДНФ для медианы от трех аргументов ===
1. В таблице истинности отмечаем те наборы переменных, на которых значение функции равно <tex> 1 </tex>.
<tex> \langle x,y,z \rangle = (x \land y \land z) \lor (\neg {x} \land y \land z) \lor (x \land \neg {y} \land z) \lor (x \land y \land \neg {z})</tex>.
==Примеры = Построение СДНФ для некоторых функций=медианы от пяти аргументов =Стрелка Пирса: <tex> x \downarrow y = (\neg {x} \land \neg {y})</tex>. Исключающее или: <tex> x \oplus y \oplus z = (\overline{x} \land \overline{y} \land z) \lor (\overline{x} \land y \land \overline{z}) \lor (x \land \overline{y} \land \overline{z}) \lor (x \land y \land z)</tex>. Медиана 5 аргументов: 
{| class="wikitable" style="width:16cm" border=1
|+
<tex> \langle x_1, x_2, x_3, x_4, x_5 \rangle = (x_1 \land x_2 \land x_3 \land \overline{x_4} \land \overline{x_5}) \lor (x_1 \land x_2 \land \overline{x_3} \land x_4 \land \overline{x_5}) \lor \\ (x_1 \land \overline{x_2} \land x_3 \land x_4 \land \overline{x_5}) \lor (\overline{x_1} \land x_2 \land x_3 \land x_4 \land \overline{x_5}) \lor (x_1 \land x_2 \land x_3 \land x_4 \land \overline{x_5}) \lor \\ (x_1 \land x_2 \land \overline{x_3} \land \overline{x_4} \land x_5) \lor (x_1 \land \overline{x_2} \land x_3 \land \overline{x_4} \land x_5) \lor (\overline{x_1} \land x_2 \land x_3 \land \overline{x_4} \land x_5) \lor \\ (x_1 \land x_2 \land x_3 \land \overline{x_4} \land x_5) \lor (x_1 \land \overline{x_2} \land \overline{x_3} \land x_4 \land x_5) \lor (\overline{x_1} \land x_2 \land \overline{x_3} \land x_4 \land x_5) \lor (x_1 \land x_2 \land \overline{x_3} \land x_4 \land x_5) \lor (\overline{x_1} \land \overline{x_2} \land x_3 \land x_4 \land x_5) \lor (x_1 \land \overline{x_2} \land x_3 \land x_4 \land x_5) \lor (\overline{x_1} \land x_2 \land x_3 \land x_4 \land x_5) \lor (x_1 \land x_2 \land x_3 \land x_4 \land x_5) </tex>.
 
==Примеры СДНФ для некоторых функций==
Стрелка Пирса: <tex> x \downarrow y = (\neg {x} \land \neg {y})</tex>.
 
Исключающее или: <tex> x \oplus y \oplus z = (\overline{x} \land \overline{y} \land z) \lor (\overline{x} \land y \land \overline{z}) \lor (x \land \overline{y} \land \overline{z}) \lor (x \land y \land z)</tex>.
 
== См. также ==
17
правок

Навигация