Изменения

Перейти к: навигация, поиск

Список заданий по ДМ 2018 весна

5131 байт добавлено, 14:14, 24 февраля 2018
Нет описания правки
# Найдите дисперсию следующей случайной величины: число бросков честной монеты до $k$-го выпадения 1.
# Перемножим счетное число вероятностных пространств, соответствующих честным монетам. Что получится? Как бы вы ввели на результате вероятностную меру?
# Сколько байт в бите?
# Докажите, что для монеты энтропия максимальна в случае честной монеты
# Докажите, что для $n$ исходов энтропия максимальна если они все равновероятны
# Пусть заданы полные системы событий $A = \{a_1, ..., a_n\}$ и $B = \{b_1, ..., b_m\}$. Определим условную энтропию $H(A | B)$ как $-\sum\limits_{i = 1}^m P(b_i) \sum\limits_{j = 1}^n P(a_j | b_i) \log P(a_j | b_i))$. Докажите, что $H(A | B) + H(B) = H(B | A) + H(A)$
# Что можно сказать про $H(A | B)$ если $a_i$ и $b_j$ независимы для любых $i$ и $j$?
# Что можно сказать про $H(A | A)$?
# Зафиксируем любой язык программирования. Колмогоровской сложностью слова $x$ называется величина $K(x)$ - минимальная длина программы на зафиксированном языке программирвоания, которая на пустом входе выводит $x$. Обозначим длину слова $x$ как $|x|$. Докажите, что $K(x) \le |x| + c$ для некоторой константы $c$.
# Предложите семейство слов $x_1, x_2, \ldots, x_n, \ldots$, где $|x_i|=i$ и начиная с некоторого $n$ выполнено $K(x_i) < i$.
# Предложите семейство слов $x_1, x_2, \ldots, x_n, \ldots$, где $|x_i|=i$ и начиная с некоторого $n$ выполнено $K(x_i) < \log i$.
# Колмогоровская сложность конкатенации. Докажите, что $K(xy) \le K(x) + K(y) + O(1)$.
# Колмогоровская сложность пары. Докажите, что $K(\langle x, y\rangle) \le K(x) + K(y) + O(\log |x|)$.
# Колмогоровская сложность и энтропия Шеннона. Для слова $x$, в котором $i$-й символ алфавита встречается $f_i$ раз обозначим как $H(x)$ величину, равную энтропии случайного источника с распределением $p_i = f_i/|x|$. Докажите, что $K(x) \le nH(x) + O(1)$.
# Докажите, что для любого $c > 0$ найдется слово, для которого $K(x) < c n H(x)$
# Петя хочет пойти в кино с вероятностью ровно 1/13, а у него есть только честная монета. Может ли он осуществить свой замысел?
# Решите предудыщее задание для любой дроби $0 \le p/q \le 1$.
# Постройте схему получения вероятности 1/3 с помощью честной монеты, имеющую минимальное математическое ожидание числа бросков. Докажите оптимальность вашей схемы.
# Дана нечестная монета. Требуется определить, какое значение выпадает с большей вероятностью. Как это сделать? Оцените количество бросков, которое потребуется, в зависимости от того, насколько $p$ отличается от $1/2$.
# Петя и Вася играют в игру. Они бросают честную монету, и выписывают результаты бросков. У каждого из игроков есть критерий победы, выигрывает тот, чей критерий наступит раньше. Петя выигрывает в тот момент, когда результаты последних двух бросков равны 11. Вася выигрывает, когда результаты последних двух бросков равны 00. С какой вероятностью Петя выиграет?
# Петя и Вася играют в игру. Они бросают честную монету, и выписывают результаты бросков. У каждого из игроков есть критерий победы, выигрывает тот, чей критерий наступит раньше. Петя выигрывает в тот момент, когда результаты последних трех бросков равны 001. Вася выигрывает, когда результаты последних трех бросков равны 010. С какой вероятностью Петя выиграет?
# Можно ли сделать игру в предыдущем задании честной (чтобы вероятности выигрышей оказались равны $1/2$), используя нечестную монету?
Анонимный участник

Навигация