Изменения

Перейти к: навигация, поиск

Формула Байеса

35 байт убрано, 22:29, 4 марта 2018
м
Fix ticket
==Теорема==
{{Определение
|definition='''Формула Байеса''' (или теорема Байеса) (англ. ''Bayes' theorem'') {{---}} соотношение различных предполагаемых вероятностей различных событий, которое дает вероятность, что какое-то событие <tex>A</tex> является результатом <tex>X</tex> ряда независимых друг от друга событий <tex>B_1,B_2...\ldots B_n</tex>, который, возможно, привел к <tex>A</tex>.
}}
{{Теорема
формула Байеса
| statement =
<tex>P(B_i|A)=\genfrac{}{}{}{0}dfrac{P(A|B_i)P(B_i)}{\sum\limits_{j=1}^N P(A|B_j)P(B_j)}</tex>,
где
: <tex>P(A)</tex> — вероятность события <tex>A</tex>,
: <tex>P(A)=\sum\limits_{j=1}^N P(A|B_j)P(B_j)</tex>
Если вероятности под знаком суммы известны или допускают экспериментальную оценку, то
: <tex>P(B_i|A)=\genfrac{}{}{}{0}dfrac{P(A|B_i)P(B_i)}{\sum\limits_{j=1}^N P(A|B_j)P(B_j)}</tex>
===Определение вероятности заболевания===
Пусть событие <tex>A</tex> наступило в результате осуществления одной из гипотез <tex>B_1,B_2...\ldots B_n</tex> . Как определить вероятность того, что имела место та или иная гипотеза?
Вероятность заразиться гриппом <tex>0.01</tex>. После проведения анализа вероятность, что это грипп <tex>0.9</tex>, другая болезнь <tex>0.001</tex>.
Событие <tex>A</tex> истинно, если анализ на грипп положительный, событие <tex>B_1</tex> отвечает за грипп, <tex>B_2</tex> отвечает за другую болезнь.
Рассмотрим вероятность гриппа при положительном анализе:
<tex>P(B_1|A)=\genfrac{}{}{}{0}dfrac{P(B_1 \cap A)}{P(A)}=\genfrac{}{}{}{0}dfrac{P(A|B_1)P(B_1)}{P(A|B_1)P(B_1)+P(A|B_2)P(B_2)}=\genfrac{}{}{}{0}dfrac{100}{111}</tex>
===Парадокс теоремы Байеса===
При рентгеновском обследовании вероятность обнаружить заболевание ''<tex>N'' </tex> у больного равна <tex>0.95</tex>, вероятность принять здорового человека за больного равна <tex>0.05</tex>. Доля больных по отношению ко всему населению равна <tex>0.01</tex>. Найти вероятность того, что человек здоров, если он был признан больным при обследовании.
Предположим, что:
: <tex>P(B_1|B)=0.95</tex>,
Вероятность «здоров» при диагнозе «болен»:
<tex>Р P(A|B_1) = \genfrac{}{}{}{0}dfrac{0.99 \cdot 0.05}{0.99 \cdot 0.05 + 0.01 \cdot 0.95}= 0.839</tex>
Таким образом, <tex>83.9\% </tex> людей, у которых обследование показало результат «болен», на самом деле здоровые люди. Удивительный результат возникает по причине значительной разницы в долях больных и здоровых. Болезнь ''<tex>N''</tex> — редкое явление, поэтому и возникает такой парадокс Байеса. При возникновении такого результата лучше всего сделать повторное обследование.
===Метод фильтрации спама===
286
правок

Навигация