Изменения

Перейти к: навигация, поиск

Схема Бернулли

67 байт добавлено, 00:07, 5 марта 2018
Нет описания правки
{{Определение
|definition=
'''Схемой Бернулли''' (англ. ''Bernoulli scheme'') называется последовательность независимых испытаний, в каждом из которых возможны лишь два исхода {{---}} «успех» и «неудача», при этом успех в каждом испытании происходит с одной и той же вероятностью <tex> p \in (0, 1)</tex> , а неудача {{---}} с вероятностью <tex> q = 1 - p </tex>.
}}
{{Определение
|definition=
Случайная величина <tex>\xi</tex> имеет '''биномиальное распределение''' (англ. ''binomial distribution'') с параметрами <tex>n \in \mathbb N</tex> и <tex> p \in (0, 1)</tex> и пишут: <tex> \xi \in \mathbb B_{n, p}</tex> если <tex> \xi</tex> принимает значения <tex>k = 0, 1, ... \ldots ,n</tex> с вероятностями <tex >P(\xi = k) = </tex><tex > \binom{n}{k} p^k (1 - p)^{n - k} </tex> .
}}
Случайная величина с таким распределением имеет смысл числа успехов в <tex> n </tex> испытаниях схемы Бернулли с вероятностью успеха <tex>p</tex>.
| 0
| 1
| ...\ldots
| <tex>k</tex>
| ...\ldots
| <tex>n</tex>
|-
| <tex>(1 - p) ^ n </tex>
| <tex>np(1 - p)^{n - 1}</tex>
| ...\ldots
| <tex>\binom{n}{k}p^k(1 - p)^{n - k} </tex>
| ...\ldots
| <tex> p^n </tex>
|}
|id=th1
|statement=
Для любого <tex >k = 0, 1, . . . \ldots , n </tex> вероятность получить в <tex>n</tex> испытаниях <tex>k</tex> успехов равна <tex> P(v_{n} = k ) = </tex> <tex dpi="145"> \binom{n}{k} </tex><tex> p^{k} q^{n - k}</tex>
|proof=
Событие <tex>\{A = v_{n} = k\}</tex> означает, что в <tex>n</tex> испытаниях схемы Бернулли произошло ровно <tex>k</tex> успехов. Рассмотрим один элементарный исход из события <tex>A</tex>: когда первые <tex>k</tex> испытаний завершились успехом, остальные неудачей. Поскольку испытания независимы, вероятность такого элементарного исхода равна <tex> p ^ {k} </tex> <tex> (1-p) ^ {n - k} </tex> Другие элементарные исходы из события <tex>A</tex> отличаются лишь расположением <tex>k</tex> успехов на <tex>n</tex> местах. Есть ровно <tex dpi="145">\binom{n}{k}</tex> cпособов способов расположить <tex>k</tex> успехов на <tex>n</tex> местах. Поэтому событие <tex>A</tex> состоит из <tex dpi="145">\binom{n}{k}</tex> элементарных исходов, вероятность каждого из которых равна <tex> p ^ {k} </tex> <tex> q ^ {n - k}</tex>
Набор вероятностей в теореме называется биномиальным распределением вероятностей.
}}
|id=th1
|statement=
Вероятность того, что первый успех произойдёт в испытании с номером <tex>k \in \mathbb N = {1, 2, 3, . . .\ldots},</tex> равна <tex>P(r = k) = pq^ {k - 1} </tex>
|proof=
Вероятность первым <tex> k - 1 </tex> испытаниям завершиться неудачей, а последнему {{---}} успехом, равна <tex> P(r = k) = pq^{k - 1} </tex>
}}
== Обобщение (полиномиальная схема) ==
Обычная формула Бернулли применима на случай когда при каждом испытании возможно одно из двух исходов.
Рассмотрим случай, когда в одном испытании возможны <tex> m</tex> исходов: <tex>1, 2, . . . \ldots , m,</tex> и <tex>i</tex>-й исход в одном испытании случаетсяс вероятностью <tex> p_{i}</tex> , где <tex>p_{1} + . . . \ldots + p_{m} = 1</tex>.
{{Теорема
|id=th1
|statement=
Обозначим через <tex>P(n_{1}, . . . \ldots , n_{m})</tex> вероятность того, что в <tex>n</tex> независимых испытаниях первый исход случится <tex> n_{1}</tex> раз, второй исход {{---}} <tex>n_{2}</tex> раз, и так далее, наконец, <tex>m</tex>-й исход {{---}} <tex>n_{m}</tex> раз тогда верна формула:<tex > P(n_{1}, . . . \ldots , n_{m}) = </tex> <tex> \dfrac{n!}{n_{1}! \cdot n_{2}! .. \cdot n_{m}!}\cdot {p_{1}}^{n_{1}}\cdot... \ldots \cdot {p_{m}}^{n_{m}}
</tex>
|proof=
Рассмотрим один элементарный исход, благоприятствующий выпадению <tex>n_{1}</tex> единиц, <tex> n_{2}</tex> двоек, и так далее.
Это результат <tex>n</tex> экспериментов, когда все нужные исходы появились в некотором заранее заданном порядке. Вероятность такого результата равна произведению вероятностей <tex>p_{n_{1}}...\ldots p_{n_{m}}</tex>. Остальные благоприятные исходы отличаются лишь расположением чисел <tex>1, 2, . . . \ldots , m</tex> на <tex>n</tex> местах. Число таких исходов равно числу способов расположить на <tex>n</tex> местах <tex>n_{1}</tex> единиц, <tex>n_{2}</tex> двоек,и так далее Это число равно<tex>\dbinom{n}{n_1}\cdot\dbinom{n - n_1 - n_2}{n_2} \cdot\dbinom{n - n_1 - n_2- n_3}{n_3} ...\ldots \cdot \dbinom{n - n_1 - n_2.. - n_{m -1}}{n_m} = \dfrac {n!}{n_{1}! \cdot n_{2}! .. \cdot n_{m}!}
</tex>
}}
Два игрока по очереди подбрасывают правильную игральную кость. Выигрывает тот, кто первым выкинет шесть очков. Найти вероятность победы игрока, начинающего игру.
Шесть очков может впервые выпасть при первом, втором, и так далее. бросках кости. Первый игрок побеждает, если это случится при броске с нечётным номером, второй {{---}} с чётным. Пусть событие <tex> A_{k} </tex> состоит в том, что шесть очков впервые выпадет в испытании с номером <tex>k</tex>. По лемме, <tex > P(A_{k}) =</tex> <tex>\dfrac{1}{6} \cdot \left(\dfrac{5}{6}\right)^{k - 1} </tex>События <tex>A , B</tex>, означающие победу первого и второго игроков соответственно, представимы в виде объединения взимоисключающих взаимоисключающих событий:<tex> A = A_{1} \cup A_{3} \cup A_{5} \cup . . . \ldots , B = B_{2}\cup B_{4} \cup B_{6} \cup . . .\ldots </tex>
Вероятности этих объединений равны суммам вероятностей слагаемых:
<tex > P(A) =</tex><tex> \dfrac{1}{6} + \dfrac{1}{6} \cdot\left(\dfrac{5}{6}\right)^{2} + \dfrac{1}{6}\cdot \left(\dfrac{5}{6}\right)^{4} ... \ldots = \dfrac{6}{11}.</tex> Теперь аналогичным образом посчитаю вероятность для события <tex>B</tex>
<tex> P(B) =</tex> <tex>\dfrac{1}{6} \cdot\dfrac{5}{6}+ \dfrac{1}{6} \cdot\left(\dfrac{5}{6}\right)^{3} + \dfrac{1}{6}\cdot \left(\dfrac{5}{6}\right)^{5} ... \ldots = \dfrac{5}{11}.
</tex>
286
правок

Навигация