Изменения
→Описание алгоритма
== Описание алгоритма==
Пусть <tex>Q_t</tex> — это дискретная случайная переменная, принимающая одно из <tex>N</tex> значений <tex>(1..\ldots N)</tex>. Будем полагать, что данная модель Маркова, определенная как <tex>P(Q_t \mid Q_{t - 1})</tex> однородна по времени, то есть независима от <tex>t</tex>. Тогда можно задать <tex>P(Q_t \mid Q_{t - 1}) </tex> как независящую от времени стохастическую матрицу перемещений <tex>A = \{a_{ij}\} = p(Q_t = j \mid Q_{t - 1} = i)</tex>. Особый случай для времени <tex>t = 1</tex> определяется начальным распределением <tex>\pi_i = P(Q_1 = i)</tex>.
Будем считать, что мы в состоянии <tex>j</tex> в момент времени <tex>t</tex>, если <tex>Q_t = j</tex>. Последовательность заданных состояний определяется как <tex>q = \{q_1 \dots q_T \}</tex>, где <tex>q_t \in \{ 1\ldots N\}</tex> является состоянием в момент времени <tex>t</tex>.