288
правок
Изменения
→Вращения
* Ни один обход от корня до листьев дерева не содержит двух последовательных красных узлов.
* Количество черных узлов на каждом таком пути одинаково.
Из этих инвариантов следует, что длина каждого пути от корня до листьев в красно-черном дереве с <tex>N</tex> узлами не превышает <tex>2 \cdot \log(N)</tex> .
Основные операции, используемые алгоритмами сбалансированного дерева для поддержания баланса при вставке и удалении, называются вращениями. Эти операции трансформируют <tex>3</tex>-узел,левый потомок которого окрашен в красный, в <tex>3</tex>-узел, правый потомок которого окрашен в красный и наоборот. Вращения сохраняют два указанных выше инварианта, не изменяют поддеревья узла.