Изменения

Перейти к: навигация, поиск

Проблема четырёх красок

595 байт добавлено, 07:13, 13 ноября 2018
Нет описания правки
{{Утверждение
|statement=В планарном графе есть вершина степени не больше <tex>4</tex> или конфигурация, состоящая из <tex>2</tex> вершин степени <tex>5</tex> или из вершины степени <tex>5</tex> и степени <tex>6</tex>
|proof=Зададим функцию <tex>f(v) = 6-deg(v) ~ \forall v \in V</tex> и назовем <tex>f(v)</tex> грузом вершины <tex>v</tex>. Предположим что наше утверждение неверно. Следовательно, в графе нет вершин степени не больше <tex>4</tex>. Тогда положительный груз есть только у вершин степени <tex>5</tex> (и он равен единице). У вершин степени <tex>6</tex> груз нулевой, а у всех остальных вершин {{---}} отрицательный. По первому доказанному выше утверждению мы знаем, что <tex>\sum\limits_{v \in V}f(v) = 12 > 0</tex>. Значит вершины степени <tex>5</tex> должны компенсировать все отрицательные грузы других вершин. Пусть каждая такая вершина отдает по <tex>\dfrac{1}{5}</tex> своего груза соседям. Тогда у всех вершин степени <tex>5</tex> и <tex>6</tex> груз останется равен <tex>0</tex> (помним что вершины степени <tex>6</tex> не смежны с вершинами степени <tex>5</tex> по предположению). Рассмотрим все остальные вершины. Так как мы проводим доказательство для триангулированных графов, то у вершины степени <tex>i</tex> не может быть больше чем <tex>\bigg\lfloor\dfrac{i}{2}\bigg\rfloor</tex> соседей степени <tex>5</tex>. Однако <tex>(6 - i) + \dfrac{1}{5}\bigg\lfloor\dfrac{i}{2}\bigg\rfloor < 0</tex> для <tex>i \geqslant 7</tex>, следовательно, сумма грузов отрицательна. Получено противоречие.
}}
Выше мы получили неизбежную конфигурацию, состоящую из небольшого количество элементов. Подобными действиями Аппель и Хакен провели <tex>487</tex> операций разгрузки и получили неизбежную конфигурацию из <tex>1482</tex> конфигураций. Некоторые из них являются сводимыми, доказательством раскрашиваемости графов с остальными и занимался компьютер.Более подробно ознакомиться со всеми операциями разгрузки и изучить полученные компьютером раскраски конфигураций можно в двух оригинальных статьях Аппеля и Хакена <ref>[https://projecteuclid.org/download/pdf_1/euclid.ijm/1256049011 Every planar map is four colorable. Part I: Discharging]</ref><ref>[https://projecteuclid.org/download/pdf_1/euclid.ijm/1256049012 Every planar map is four colorable. Part II: Reducibility]</ref>
== См. также ==
* [[Раскраска графа]]
* [[Хроматическое число планарного графа]]
 
== Примeчания ==
<references/>
== Источники информации ==
286
правок

Навигация