Изменения

Перейти к: навигация, поиск

Группы. Действие группы на множестве

302 байта добавлено, 22:26, 25 декабря 2018
Нет описания правки
{{Определение
|id=group_action
|neat = 1
|definition=Группа <tex>G</tex> '''действует на множестве''' <tex>X</tex>, если задано отображение <tex>G \times X \rightarrow X</tex> (обозначается <tex>g \cdot x</tex>), такое что для любого <tex>x \in X</tex>, а также для любых <tex>g_1, g_2 \in G</tex> оно обладает свойствами:
# <tex>(g_1 \cdot g_2) \cdot x = g_1 \cdot (g_2 \cdot x)</tex>
{{Определение
|id=orbit
|neat = 1
|definition=Пусть группа <tex>G</tex> действует на множество <tex>X</tex>. Тогда '''орбитой''' элемента <tex>x \in X</tex> называется множество: <tex>Orb(x) = \{y \in X \mid \exists g \in G : g \cdot x = y\}</tex>
}}
 
Иными словами, орбитой элемента множества <tex>X</tex> в группе <tex>G</tex> называется порожденный им класс эквивалентности по отношению <tex>\sim</tex>.
{{Определение
|id=stabilizer
|definition=Пусть группа <tex>G</tex> действует на множество <tex>X</tex>. Тогда '''стабилизатором''' элемента <tex>g \in G</tex> называется множество: <tex>St(g) = \{x \in X \mid g \cdot x = x\}</tex>
}}
48
правок

Навигация