Сверточный слой нейронной сети представляет из себя применение операции свертки к выходам с предыдущего слоя, где веса ядра свертки являются обучаемыми параметрами. Еще один обучаемый вес используется в качестве константного сдвига (англ. bias). При этом есть несколько важных деталей:
Ядер свертки на каждом * В одном сверточном слое может быть несколько и они сверток. В этом случае для каждой свертки на выходе получится своё изображение. Например, если вход имел размерность <math>w\times h</math>, а в слое было <math>n</math> сверток с ядром размерности <math>k_x\times k_y</math>, то выход будет иметь размерность <math>n\times(w - k_x + 1)\times(h - k_y + 1)</math>. * Ядра свертки могут быть трехмернымитрёхмерными. Свертка трехмерного входа с трехмерным ядром происходит аналогично, просто скалярное произведение считается еще и по всем слоям изображения. Например, если мы хотим как-то усреднить на первом слое информацию для усреднения информации о трёх цветовых каналах цветах исходного изображения, то мы можем поместить на первый слой первом слое можно использовать свертку с ядром размерности <math>3\times w \times h</math>. На выходе такого слоя будет уже одно изображение (вместо трёх). * Можно заметить, что применение операции свертки уменьшает изображение. Также можно иметь несколько пиксели, которые находятся на границе изображения учавствуют в меньшем количестве сверток на одном слое нейронной сети, напримерчем внутренние. В связи с этим в сверточных слоях используется дополнение изображения (англ. padding). Выходы с предыдущего слоя дополняются пикселями так, чтобы после свертки сохранился размер изображения (распространенной практикой является дополнять изображение нулями (англ. zero padding), но возможны и другие подходы). Такие свертки называют ''одинаковыми'' (англ. same convolution), а свертки без дополнения изображения называются ''правильными'' (англ. valid convolution). * Еще одним параметром сверточного слоя является ''сдвиг'' (англ. stride). Хоть обычно свертка применяется подряд для каждого пикселя, иногда используется сдвиг, отличный от единицы {{---}} скалярное произведение считается не со всеми возможными положениями ядра, а только с положениями, кратными некоторому сдвигу <math>s</math>. Тогда, если на входе один слой изображения если вход имел размерность <math>w\times h</math>, а ядро свертки имело размерность <math>k_x\times k_y</math> и 6 свертокиспользовался сдвиг <math>s</math>, то на выходе выход будет 6 слоев изображенияиметь размерность <math>\lfloor\frac{w - k_x}{s} + 1\rfloor\times\lfloor\frac{h - k_y}{s} + 1\rfloor</math>.
Еще одна важная делать заключается в том, что применение операции свертки уменьшает изображение. Также пиксели, которые находятся на границе изображения учавствуют в меньшем количестве сверток, чем внутренние. В связи с этим в сверточных слоях используется дополнение изображения (англ. padding). Выходы с предыдущего слоя дополняются пикселями так, чтобы после свертки сохранился размер изображения (распространенной практикой является дополнять изображение нулями (англ. zero padding), но возможны и другие подходы). Такие свертки называют ''одинаковыми'' (англ. same convolution), а свертки без дополнения изображения называются ''правильными'' (англ. valid convolution).
== Пулинговый слой ==
Пулинговый слой призван снижать размерность изображения. Исходное изображение делится на блоки размером <math>w\times h</math> и для каждого блока вычисляется некоторая функция (например, максимум в случае max pooling или (взвешенное) среднее в случае (weighted) average pooling). Обучаемых параметров у этого слоя нет, его основная цель {{---}} уменьшить изображение, чтобы последующие свертки оперировали над большей областью исходного изображения. Также призван увеличить инвариантность выхода сети по отношению к малому переносу входа.