Изменения

Перейти к: навигация, поиск

Модель алгоритма и её выбор

328 байт добавлено, 19:48, 17 января 2019
Добавлена картинка, изменена ссылка на статью
=== Методы выбора модели ===
[[Файл:Scikit-learn-scheme.png|300px|thumb|[https://www.codeastar.com/choose-machine-learning-models-python/ Рис 1. Схема выбора модели в библиотеке scikit-learn для Python]]]
Модель можно выбрать из некоторого множества моделей, проверив результат работы каждой модели из множества с помощью ручного тестирования, но ручное тестирование серьезно ограничивает количество моделей, которые можно перебрать, а также требует больших трудозатрат. Поэтому в большинстве случаев используются алгоритмы, позволяющие автоматически выбирать модель. Далее будут рассмотрены некоторые из таких алгоритмов.
==== Мета-обучение ====
Целью мета-обучения является решение задачи выбора алгоритма из портфолио алгоритмов для решения поставленной задачи без непосредственного применения каждого из них. Решение этой задачи в рамках мета-обучения сводится к задаче [https://ru.wikipedia.org/wiki/%D0%9E%D0%B1%D1%83%D1%87%D0%B5%D0%BD%D0%B8%D0%B5_%D1%81_%D1%83%D1%87%D0%B8%D1%82%D0%B5%D0%BB%D0%B5%D0%BC обучения с учителем]. Для этого используется заранее отобранное множество наборов данных <tex> D </tex>. Для каждого набора данных <tex> d \in D </tex> вычисляется вектор мета-признаков, которые описывают свойства этого набора данных. Ими могут быть: число категориальных или численных признаков объеков в <tex> d </tex>, число возможных меток, размер <tex> d </tex> и [https://ieeexplore.ieee.org/document/7382962 многие другие], а еще эту статью можно найти вот [https://www.fruct.org/publications/ainl-fruct/files/Fil.pdf многие другиетут]. Каждый алгоритм запускается на всех наборах данных из <tex> D </tex>. После этого вычисляется эмпирический риск, на основе которого формируются метки классов. Затем мета-классификатор обучается на полученных результатах. В качестве описания набора данных выступает вектор мета-признаков, а в качестве метки — алгоритм, оказавшийся самым эффективным с точки зрения заранее выбранной меры качества.
Более подробно про мета-обучение можно почитать в [[Мета-обучение | соответствующей статье]]<sup>[на 08.01.19 не создан]</sup>
Библиотека позволяет автоматически выбирать из 27 базовых алгоритмов, 10 мета-алгоритмов и 2 ансамблевых алгоритмов лучший, одновременно настраивая его гиперпараметры при помощи алгоритма [https://www.ml4aad.org/automated-algorithm-design/algorithm-configuration/smac/ SMAC]. Решение достигается полным перебором: оптимизация гиперпараметров запускается на всех алгоритмах по очереди. Недостатком такого подхода является слишком большое время выбора модели.
===Автоматизированный выбор модели в библиотеке [https://epistasislab.github.io/tpot/ Tree-base Pipeline Optimization Tool (TPOT)] для Python.===
[[Файл:TPOT-scheme.jpeg|300px|thumb|[https://raw.githubusercontent.com/EpistasisLab/tpot/master/images/tpot-ml-pipeline.png Рис 12. Схема выбора модели в библиотеке TPOT]]]
Библиотека используется для одновременного поиска оптимальной модели и оптимальных гиперпараметров модели для задачи классификации.
===Автоматизированный выбор модели в библиотеке [https://automl.github.io/auto-sklearn/stable/ auto-sklearn] для Python.===
[[Файл:Auto-sklearn-scheme.png|300px|thumb|[https://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning.pdf Рис 23. Схема выбора модели в библиотеке auto-sklearn]]]
Библиотека используется для одновременного поиска оптимальной модели и оптимальных гиперпараметров модели для задачи классификации.
11
правок

Навигация