49
правок
Изменения
Нет описания правки
Идея данного метода в том, что чем ближе друг к другу находятся объекты внутри кластеров, тем лучше разделение.
Таким образом, необходимо минимизировать внутриклассовое расстояние, например, сумму квадратов отклонений (within cluster sum of squares):
: <math>
WSS = \sum \limits_{j=1}^{M} \sum \limits_{i = 1}^{|C_j|} (x_{ij} - \overline{x_j})^2
В данном случае идея противоположная {{---}} чем дальше друг от друга находятся объекты разных кластеров, тем лучше.
Поэтому здесь стоит задача максимизации суммы квадратов отклонений (between cluster sum of squares):
: <math>
BSS = n \cdot \sum \limits_{j=1}^{M} (\overline{x_{j}} - \overline{x})^2