38
правок
Изменения
→Управляемые рекуррентные нейроны
=== Управляемые рекуррентные нейроны ===
Немного больше отличаются от стандартных LSTM управляемые рекуррентные нейроны (англ. ''Gated recurrent units, GRU''), впервые описанные в работе Кюнгхюна Чо (англ. Kyunghyun Cho)<ref name=Cho>[https://arxiv.org/pdf/1406.1078v3.pdf Cho. Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation (2014).]</ref>. В ней фильтры У них на один фильтр меньше, и они немного иначе соединены. Фильтры «забывания» и входа объединяют в один фильтр «обновления» (англ. ''update gate''). Этот фильтр определяет сколько информации сохранить от последнего состояния, и сколько информации получить от предыдущего слоя. Кроме того, состояние ячейки объединяется со скрытым состоянием, есть и другие небольшие изменения. Построенная Фильтр сброса состояния (англ. ''reset gate'') работает почти так же, как фильтр забывания, но расположен немного иначе. На следующие слои отправляется полная информация о состоянии, выходного фильтра нет. В большинстве случаем GRU работают так же, как LSTM, самое значимое отличие в том, что GRU немного быстрее и проще в эксплуатации, однако обладает немного меньшими выразительными возможностями. В результате модель модели проще, чем стандартная LSTM, и их популярность ее неуклонно возрастает. Эффективность при решении задач моделирования музыкальных и речевых сигналов сопоставима с использованием долгой краткосрочной памяти, но по сравнению с LSTM у данного механизма меньше параметров.
[[File:Lstm-gru.png|none|650px]]