Изменения

Перейти к: навигация, поиск

Мета-обучение

2578 байт добавлено, 19:01, 7 апреля 2019
Нет описания правки
<b>Мета-обучение</b> {{---}} подход, позволяющий определять наиболее подходящий алгоритм (иногда, вместе с параметрами к нему) для конкретной задачи из портфолио алгоритмов. Основная идея мета-обучения {{---}} свести задачу выбора алгоритма к задаче [https://ru.wikipedia.org/wiki/%D0%9E%D0%B1%D1%83%D1%87%D0%B5%D0%BD%D0%B8%D0%B5_%D1%81_%D1%83%D1%87%D0%B8%D1%82%D0%B5%D0%BB%D0%B5%D0%BC [Общие понятия#Классификация задач машинного обучения|обучения с учителем]]: задачи описываются мета-признаками. Мета-признак описывает свойство задачи {{---}} например, разрежен ли датасет или нет, число категориальных или численных признаков объеков в датасете, число возможных меток, размер датасета и многое другое.
От хорошей модели ожидается высокая адаптируемость к новым задачам и окружениям, с которыми модель не сталкивалась во время на небольшом количестве примеров. Примеры задач мета-обучения.:
Такими задачами являются:* Классификатор обучали на изображениях собак и велосипедов, давайте покажем ему дообучим его определять еще и кошек и проверим, сможет ли классификатор определить, есть ли на новой картинке кошка
* Бот для игр, способный быстро обучиться новой игре
* Робот, выполняющий задачу на пригорке во время теста даже если он обучался на ровной поверхности
 
Ограничения {{---}} No free lunch (NFL) teorem<ref>[https://www.researchgate.net/publication/221997149_No_Free_Lunch_Theorems_for_Search Wolpert and Macready, 1996]</ref><ref>[https://www.researchgate.net/publication/228671734_Toward_a_justification_of_meta-learning_Is_the_no_free_lunch_theorem_a_show-stopper Giraud-Carrier and Provost, 2005]</ref> , доказанная в 1996 году.
Пусть $P(d_{m}^{y}| f, m, a)$ {{---}} условная вероятность получения частного решения $d_m$ после $m$ итераций работы алгоритма $a$ при целевой функции $f$. Для любой пары алгоритмов $a_1$ и $a_2$ иммет место равенство
 
\begin{aligned}
\sum_{f}P(d_{m}^{y}| f, m, a_1) = \sum_{f}P(d_{m}^{y}| f, m, a_2)
\end{aligned}
 
Иначе говоря, не существует алгоритма классификации, который лучше всех других на всех возможных входных данных.
<h2>Обзор</h2>
Модель должна быть обучена на множестве задач и оптимизирована для лучшей производительности на нескольких задачах, включая такие,
с которыми модель не сталкивалась ранее. Каждой задаче соответствует множество наборов данных $\mathcal{D}$, каждый из которых содержит и векторы фичей признаков и разметку.
Оптимальные параметры модели:
Очень похоже на обычную задачу машинного обучения, только один датасет принимается за один сэмпл данных.
 
Ограничения {{---}} no free lunch (NFL) theorem<ref>[https://www.researchgate.net/publication/221997149_No_Free_Lunch_Theorems_for_Search Wolpert and Macready, 1996]</ref><ref>[https://www.researchgate.net/publication/228671734_Toward_a_justification_of_meta-learning_Is_the_no_free_lunch_theorem_a_show-stopper Giraud-Carrier and Provost, 2005]</ref> , доказанная в 1996 году.
Пусть $P(d_{m}^{y}| f, m, a)$ {{---}} условная вероятность получения частного решения $d_m$ после $m$ итераций работы алгоритма $a$ при целевой функции $f$. Для любой пары алгоритмов $a_1$ и $a_2$ иммет место равенство
 
\begin{aligned}
\sum_{f}P(d_{m}^{y}| f, m, a_1) = \sum_{f}P(d_{m}^{y}| f, m, a_2)
\end{aligned}
Общая идея такая: для каждого набора данных $d \in \mathcal{D}$ вычисляется вектор мета-признаков, которые описывают свойства этого набора данных. Ими могут быть: число категориальных или численных признаков объеков в $d$, число возможных меток, размер $d$ и многие другие<ref>[https://www.fruct.org/publications/ainl-fruct/files/Fil.pdf Datasets meta-feature description for recommending feature selection algorithm]</ref>. Каждый алгоритм запускается на всех наборах данных из $\mathcal{D}$. После этого вычисляется эмпирический риск, на основе которого формируются метки классов. Затем мета-классификатор обучается на полученных результатах. В качестве описания набора данных выступает вектор мета-признаков, а в качестве метки — алгоритм, оказавшийся самым эффективным с точки зрения заранее выбранной меры качества.
Кажддый датасет $d \in \mathcal{D}$ содержит пары фичей признаков и меток, $\{(\mathbf{x}_i, y_i)\}$, каждая метка принадлежит известному множеству меток $\mathcal{L}$.Датасет $d$ делится на две части: $d=\langle S, B\rangle$, обучающую $S$ и тестовую $B$ выборки. Часто принимается k-shot N-class задача {{- --}} обучающая выборка содержит $k$ размеченных примеров для каждого из $N$ классов.Скажем, наш классификатор $f_\theta$ с параметром $\theta$ показывает вероятность принадлежности точки из данных к классу $y$ при векторе фичей $x$признакопризнаков, $P_\theta(y|x)$.
Оптимальные параметры должны максимизировать вероятность получения верных меток среди нескольких обучающих выборок $B⊂\mathcal{D}$:
# возьмем обучающее множесто $S^L⊂D$ и обучающую выборку $B^L⊂D$. Оба содержат только данные с метками из подмножества с пункта 1: $L, y \in L, \forall (x, y) \in S^L, B^L$
# Множество $S^L$ подается на вход модели
# Конечная оптимизация использует множество $B^L$ , чтобы посчитать loss функцию потерь и обновить параметры модели через обратное распространение, так же, как это делается в обучении с учителем.
\begin{aligned}
Идея в некоторой степени аналогична использованию предварительно обученной модели в классификации изображений (ImageNet) или в [[обработка естественного языка | NLP]] (большие текстовые корпуса),
когда доступен только ограниченный набор образцов данных для конкретной задачи. Модель обучается таким образом, чтобы она могла обобщиться до других датасетов.
 
<h2> Лэндмарки </h2>
Лэндмарки {{---}} подход для описания задач мета-обучения. В отличие от предшетсвенников, использовавших только статистические и околостатистические метрики, лендмарки
стараются определить расположение конкретной задачи мета-обучения в пространстве всех задач обучения, измеряя производительность некоторых простых и эффективных алгоритмов.
Таким образом, можно скзаать, что алгоритм обучения сам характеризуют задачу.
 
<h3> Ближайший сосед </h3>
Elite 1-nearest neighbor <ref>Bernhard Pfahringer, Hilan Bensusan, and Christophe G. Giraud-Carrier. Meta-learning by landmarking various learning algorithms.In \emph{17th International Conference on Machine Learning (ICML)}, pages 743 -- 750, 2000.</ref>
 
Лэндмарк, очевидно, считает 1 ближайшего соседа. Помогает установить, является ли задача релевантной, если похожи их атрибуты.
 
$P(\theta_{1NN},t_{j})$
 
<h3> Линейный дискриминант </h3>
 
Линейный дискриминант (англ. ``linear discriminant'') можно понимать как группировка и разделение категорий соответсвующих конкретным признакам. Линейный дискриминант
обычно ищет линейную комбинацию признаков, которая лучше всего разделеит классы. Результат - линия, плоскость или гиперплоскость, зависит от числа комбинированных признаков.
 
$P(\theta_{Lin},t_{j})$
 
<h3> Наивный Байесовский лендмарк </h3>
 
Наивный Байесовский лендмарк <ref>Daren Ler, Irena Koprinska, and Sanjay Chawla. Utilizing regression-based landmarkers within a meta-learning framework for algorithm selection. \emph{Technical Report 569. University of Sydney}, pages 44--51, 2005.</ref> {{---}} вероятностный классификатор, основанный на [[формула байеса | теореме Байеса]. Называется наивным потому что
предполагается, что все атрибуты независимы друг от друга.
 
$P(\theta_{NB},t_{j})$
<h2>Основанные на оптимизации</h2>
{| class="wikitable"
|+ мета-признакпризнаки
|-
! '''Название''' !! '''Формула''' !! '''Объяснение''' !! '''Варианты'''
|-
| colspan="4" align="center" | '''simpleпростые'''
|-
| Nr # instances || $n$ || Speed, Scalability<ref>[https://www1.maths.leeds.ac.uk~charlesstatlogwhole.pdf Donald Michie, David J. Spiegelhalter, Charles C. Taylor, and John Campbell. Machine Learning, Neural and Statistical Classification, 1994]</ref> || $p/n$, $log(n)$, log(n/p)
|-
| Nr # features || $p$ || Curse of dimensionality || $log(p)$, % categorical
|-
| Nr # classes || $c$ || Complexity, imbalance || ratio min/maj class
|-
| Nr # of missing values || $m$ || Imputation effects <ref>A. Kalousis. Algorithm Selection via Meta-Learning. PhD thesis, University of Geneva, Department of Computer Science, 2002</ref> || % missing
|-
| Nr # outliers || $o$ || Data noisiness <ref>Peter J. Rousseeuw and Mia Hubert. Robust statistics for outlier detection. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2011.</ref> || $o/n$
|-
| colspan="4" align="center" | '''статистические'''
| colspan="4" align="center" | '''основанные на модели'''
|-
| Nr # nodes, leaves || <tex>|\eta|,|\psi|</tex> || Concept complexity <ref>Y Peng, P Flach, C Soares, and P Brazdil. Improved dataset characterisation for meta-learning, 2002.</ref> || Tree depth
|-
| Branch length || || Concept complexity || min,max,$\mu$,$\sigma$
| Information gain || || Feature importance || min,max,$\mu$,$\sigma$, gini
|-
| colspan="4" align="center" | '''ориентиры лэндмарки (landmarks)'''
|-
| Landmarker(1NN) || $P(\theta_{1NN},t_{j})$ || Data sparsity <ref>Bernhard Pfahringer, Hilan Bensusan, and Christophe G. Giraud-Carrier. Meta-learning by landmarking various learning algorithms.In \emph{17th International Conference on Machine Learning (ICML)}, pages 743 -- 750, 2000.</ref> ||
Многие мета-признаки вычисляются по одиночным признакам или их комбинации, и должны быть агрегированы через min, max, $\mu$, $\sigma$, квартили или гистограммы.
Во время вычисления похожести задач важно нормализовать все мета-признаки, использовать отбор признаков <ref>L Todorovski and S Dzeroski. Experiments in meta-level learning with ILP. Lecture Notes in Computer Science, 1704:98–106, 1999.</ref> или использовать [[уменьшение размерности | уменьшение размерности]] (например, principal component analisys {{---}} [[Метод главных компонент (PCA, например)| PCA]]).
== Примечания ==
16
правок

Навигация