Изменения

Перейти к: навигация, поиск

Известные наборы данных

311 байт добавлено, 12:42, 9 апреля 2019
м
Нет описания правки
===Описание===
[[Файл:Cifar-10.png|мини|[https://medium.com/@jannik.zuern/training-a-cifar-10-classifier-in-the-cloud-using-tensorflow-and-google-colab-f3a5fbdfe24d Источник]]]
CIFAR-10 (Canadian Institute For Advanced Research) {{---}} еще один большой набор изображений, который обычно используется для тестирования алгоритмов машинного обучения. Он содержит 60 000 цветных картинок размером 32х32 пикселя, размеченных в один из десяти классов: самолеты, автомобили, коты, олени, собаки, лягушки, лошади, корабли и грузовики. В датасете по 6000 картинок каждого класса. CIFAR-10 является размеченным подмножеством заметно большего набора данных, состоящего примерно из восьмидесяти миллионов изображений.
===Описание===
[[Файл:Imagenet.png|мини|[http://www.image-net.org/challenges/LSVRC/2014/ Источник]]]
База данных Imagenet {{---}} проект по созданию и сопровождению массивной базы данных аннотированных изображений. Аннотация изображений происходит путем краудсорсинга сообществом. Из-за этого достигается большое количество размеченных данных.
===Imagenet Challenge===
[[Файл:Imagenet-contest.png|мини|[https://en.wikipedia.org/wiki/File:ImageNet_error_rate_history_(just_systems).svg Оригинал]]]
Вместе с публикацией набора данных стартовал конкурс ImageNet Large Scale Visual Recognition Challenge (ILSVRC<ref>http://www.image-net.org/challenges/LSVRC/[http://www.image-net.org/challenges/LSVRC/]</ref>). В его рамках участникам предлагается достигнуть наибольшей точности при классификации набора изображений. Организаторы использовали около тысячи различных категорий объектов, которые нужно классифицировать. На примере этого конкурса хорошо видно, как в 2010-е годы люди научились заметно лучше распознавать образы на изображениях, уже в 2017 году большинство участвующих команд преодолели порог в 95% правильных ответов. Эта задача, проблема компьютерного зрения, имеет огромное практическое значение во многих прикладных областях.
==Примечания==
47
правок

Навигация