390
правок
Изменения
м
Исправил многоточия ещё
'''Индукционный переход:''' Пусть <tex>\left\vert \omega \right\vert=n</tex> и <tex>\forall \upsilon</tex>: <tex>\left\vert \upsilon \right\vert < n</tex> и <tex>\upsilon</tex> {{---}} правильная скобочная последовательность, у которой <tex>\exists!</tex> дерево разбора.
:Найдем в слове <tex>\omega</tex> минимальный индекс <tex>i \neq 0</tex> такой, что слово <tex>\omega[0..\ldots i]</tex> является правильной скобочной последовательностью. Так как <tex>i \neq 0</tex> минимальный, то <tex>\omega[0..\ldots i]=(\alpha)\ </tex>. Из того, что <tex>\omega</tex> является правильной скобочной последовательностью <tex>\Rightarrow</tex> <tex>\alpha</tex> и <tex>\beta=\omega[i+1..\ldots n-1]</tex> {{---}} правильные скобочные последовательности, при этом <tex>\left\vert \alpha \right\vert<n</tex> и <tex>\left\vert \beta \right\vert<n \Rightarrow</tex> по индукционному предположению предположению у <tex>\alpha</tex> и <tex>\beta</tex> существуют единственные деревья разбора.
:Если мы покажем, что из части <tex>(S)</tex> первого правила можно вывести только слово <tex>(\alpha)</tex>, то утверждение будет доказано (так как из первой части первого правила выводится <tex>\alpha</tex>, а из второй только <tex>\beta</tex> и для каждого из них по предположению существуют единственные деревья разбора).
:Пусть из <tex>(S)</tex> была выведена часть слова <tex>\omega[0..\ldots j]=(\gamma)</tex>, где <tex>j < i</tex>, при этом <tex>\gamma</tex> является правильной скобочной последовательностью, но тогда как минимальный индекс мы должны были выбрать <tex>j</tex>, а не <tex>i</tex> {{---}} противоречие.
:Аналогично из <tex>(S)</tex> не может быть выведена часть слова <tex>\omega[0..\ldots j] \ </tex>, где <tex>j > i</tex>, потому что тогда <tex>\omega[0..\ldots i]=(\alpha) \ </tex> не будет правильной скобочной последовательностью, так как в позиции <tex>i-1</tex> баланс скобок будет отрицательный.
:Значит, из <tex>(S)</tex> была выведена часть слова <tex>\omega[0..\ldots i] \Rightarrow \omega \ </tex> имеет единственное дерево разбора <tex>\Rightarrow</tex> данная грамматика однозначная.
Таким образом, для языка правильных скобочных последовательностей мы привели пример как однозначной, так и неоднозначной грамматики.