Изменения
→Стохастическое вложение соседей
<tex>Perp(P_i) = 2 ^ {H(P_i)}</tex>.
Изначально точки <tex>y_i</tex> сэмплируют в низкоразмерном пространстве в соответствии с Гауссовским распределением Гаусса с маленьким стандартным отклонением с математическим ожиданием в нуле, далее идет оптимизация целевой функции. Она проводится [[Стохастический градиентный спуск|методом градиентного спуска]]. Градиент равен:
<tex>\frac {\delta C} {\delta y_i} = 2 \sum\limits_j (p_{j|i} - q_{j|i} + p_{i|j} - q_{i|j})(y_i - y_j)</tex>