Изменения
→Стохастическое вложение соседей
Данные вероятности получаются из тех же самых предложений, что были сделаны для пространства высокой размерности, за исключением того, что все распределения Гаусса имеют стандартное отклонение <tex>\frac{1}{\sqrt{2}}</tex> для всех точек.
Если удастся хорошо вложить одно пространство в другое, должны совпасть распределения совместных вероятностей. То есть <tex>p_{i|j}</tex> должны стать похожими на <tex>q_{i|j}</tex>. В связи с этим SNE пытается уменьшить разницу в распределении вероятностей. Стандартной мерой для измерения различия вероятностей служит дивергенция Кульбака-Лейблера<ref>[https://ru.wikipedia.org/wiki/Расстояние_Кульбака_—_Лейблера Расстояние Кульбака—Лейблера]</ref>. Определяется она так:
<tex>KL(P \Vert Q) = \sum\limits_j p_j \log_2 \frac{p_j}{q_j}</tex>.
Дивергенция Кульбака-Лейблера не является симметричной мерой, поэтому, например, вложение близких точек в удаленные даёт гораздо большее значение ошибки, чем вложение далеких точек в близкие. Другими словами, целевая функция нацелена на сохранение локальной структуры вокруг точек.
Параметры <tex>\sigma_i</tex> подбираются следующим образом. Каждое значение параметра порождает свое распределение вероятностей <tex>P_i</tex>. Это распределение имеет энтропию<ref>[https://ru.wikipedia.org/wiki/Информационная_энтропия Информационная энтропия]</ref> <tex>H(P_i) = \sum\limits_j p_{j|i}\log_2 p_{j|i} </tex>, которая возрастает с ростом <tex>\sigma_i</tex>. В самом алгоритме <tex>\sigma_i</tex> вычисляются с помощью [[Вещественный двоичный поиск|вещественного двоичного поиска]] по заранее заданной пользователем величине, называемой перплексией<ref>[https://en.wikipedia.org/wiki/Perplexity Perplexity]</ref>, которая определяется как : <tex>Perp(P_i) = 2 ^ {H(P_i)}</tex>.
Изначально точки <tex>y_i</tex> сэмплируют в пространстве низкой размерности в соответствии с распределением Гаусса с маленьким стандартным отклонением с математическим ожиданием в нуле, далее идет оптимизация целевой функции. Она проводится [[Стохастический градиентный спуск|методом градиентного спуска]]. Градиент равен: