Изменения

Перейти к: навигация, поиск

Регуляризация

39 байт добавлено, 13:15, 21 января 2020
Регуляризация в линейной регрессии
В итоге оптимизируемый функционал эмпирического риска выглядит следующим образом:
:$Q(a) = \|F\beta - y\|^2$,
где $F = (f_{(x_{i}}))_{l \times n}$ {{---}} матрица объекты-признаки, $y = (y_{i})_{l \times 1}$ {{---}} целевой вектор, $\beta = (\beta_{j})_{n \times 1}$ {{---}} вектор параметров.
Приравняв нулю производную $Q(\beta)$ по параметру $\beta$, получаем:
:$\beta^* = (F^TF)^{-1}F^Ty$
В итоге, использовав используя [[Сингулярное разложение | сингулярное разложение]] для представления $F$ и проведя МНК-аппроксимизацию целевого вектора $y$, имеем выражение для нормы вектора $\beta$:
:$\|\beta^*\|^2 = \sum\limits_{j=1}^n \frac{1}{\lambda_{j}}(v_{j}^Ty)^2$
К сожалению, могут возникнуть проблемы мультиколлинеарности и переобучения в случае, если ковариационная матрица $\sum = F^T F$ плохо обусловлена. Одним из способов борьбы с этими проблемами , как говорилось ранее, является регуляризация.
В статье о [[Виды регрессии | видах регрессии]] представлены модификации линейной регресиии с различными регуляризаторами ($L_{1}$ и $L_{2}$) и их отличие. Описание в данном разделе будет похожим, однако здесь будет рассмотрен эффект от добавления регуляризаторов немного детальнееподробнее.
===Гребневая регрессия===
193
правки

Навигация