113
правок
Изменения
Нет описания правки
Рассмотрим нейрон Z с выходным значением <tex>Z = \sum\limits_{i} w_{i}x_{i} + bias</tex>, где <tex>w_{i}</tex> и <tex>x_{i}</tex> {{---}} вес и входное значение <tex>i</tex>-ого входа, а <tex>bias</tex> {{---}} смещение. Полученный результат передается в функцию активации, которая решает рассматривать этот нейрон как активированный, или его можно игнорировать.
[[Файл:BinaryStepFunction.pngjpg|300px|thumb|right|Рис 1. Binary step function]]
===Ступенчатая функция===
Ступенчатая функция (англ. ''binary step function'') является пороговой функцией активации.
Но она не работает, когда для классификации требуется большее число нейронов и количество возможных классов больше двух.
[[Файл:LinearFunction.jpg|300px|thumb|right|Рис 2. Linear function]]
===Линейная функция===
Линейная функция (англ. ''linear function'') представляет собой прямую линию, то есть <tex>Z = \sum\limits_{i} w_{i}x_{i}</tex>, а это значит, что выходное значение этой функции активации пропорционально входному. В отличии от предыдущей функции, она позволяет получить диапазон значений на выходе, а не только бинарные 0 и 1, что решает проблему классификации с большим количеством классов. Но у линейной функции есть две основных проблемы:
# Невозможность использования [[Обратное распространение ошибки | метода обратного распространения ошибки]]. Так как в основе этого метода обучения лежит [[Стохастический градиентный спуск | градиентный спуск]], а для того чтобы его найти, нужно взять производную, которая для данной функции активации {{---}} константа и не зависит от входных значений. То есть при обновлении весов нельзя сказать улучшается ли эмпирический риск на текущем шаге или нет.
# Рассмотрим нейронную сеть с несколькими слоями с данной функцией активации. Так как для каждого слоя выходное значение линейно, то они образуют линейную комбинацию, результат которой является линейной функцией. То есть финальная функция активации на последнем слое зависит только от входных значений на первом слое. Это значит, что любое количество слоев может быть заменено всего одним слоем.
===Сигмоида===