Изменения

Перейти к: навигация, поиск
Нет описания правки
Результирующая точность классификатора рассчитывается как арифметическое среднее его точности по всем классам. То же самое с полнотой. Технически этот подход называется macro-averaging.
 
=== F-mera ===
 
Precision и recall не зависят, в отличие от accuracy, от соотношения классов и потому применимы в условиях несбалансированных выборок.
Часто в реальной практике стоит задача найти оптимальный (для заказчика) баланс между этими двумя метриками. Понятно что чем выше точность и полнота, тем лучше. Но в реальной жизни максимальная точность и полнота не достижимы одновременно и приходится искать некий баланс. Поэтому, хотелось бы иметь некую метрику которая объединяла бы в себе информацию о точности и полноте нашего алгоритма. В этом случае нам будет проще принимать решение о том какую реализацию запускать в production (у кого больше тот и круче). Именно такой метрикой является F-мера.
 
F-мера представляет собой [[гармоническое среднее]] между точностью и полнотой. Она стремится к нулю, если точность или полнота стремится к нулю.
 
[[Файл:f1.png]]
 
Данная формула придает одинаковый вес точности и полноте, поэтому F-мера будет падать одинаково при уменьшении и точности и полноты. Возможно рассчитать F-меру придав различный вес точности и полноте, если вы осознанно отдаете приоритет одной из этих метрик при разработке алгоритма.
 
[[Файл:f-mera.png]]
 
 
 
 
187
правок

Навигация