Изменения

Перейти к: навигация, поиск
F-mera
[[Файл:F_balanc.jpg|left|thumb|Рис.1 Сбалансированная F-мера, <math>β=1</math>]][[Файл:F_prior_Prec.jpg|thumb|Рис.2 F-мера c приоритетом точности, <math>β^2=\dfrac{ 1 }{ 4 }</math>]][[Файл:F_prior_Recal.jpg|thumb|Рис.3 F-мера c приоритетом полноты, <math>β^2=2</math>]]
''Precision'' и ''recall'' не зависят, в отличие от ''accuracy'', от соотношения классов и потому применимы в условиях несбалансированных выборок.
Часто в реальной практике стоит задача найти оптимальный (для заказчика) баланс между этими двумя метриками. Понятно что чем выше точность и полнота, тем лучше. Но в реальной жизни максимальная точность и полнота не достижимы одновременно и приходится искать некий баланс. Поэтому, хотелось бы иметь некую метрику которая объединяла бы в себе информацию о точности и полноте нашего алгоритма. В этом случае нам будет проще принимать решение о том какую реализацию запускать в production производство (у кого больше тот и круче). Именно такой метрикой является F-мера.
F-мера представляет собой [[гармоническое среднее]] между точностью и полнотой. Она стремится к нулю, если точность или полнота стремится к нулю.
187
правок

Навигация