Изменения

Перейти к: навигация, поиск

Оценка положения

3330 байт добавлено, 21:21, 20 апреля 2020
Нет описания правки
В зависимости от наличия специальных оптических маркеров выделяют отдельно:
*Без маркерный трекинг как правило строится на сложных алгоритмах с использованием двух и более камер, либо стерео камер с сенсорами глубины. Используется наибольшим образом в автомобилях с автопилотам и иными системами помощи водителю.
*Трекинг с использованием маркеров предполагает заранее заданную модель объекта, которую можно отслеживать даже с одной камерой. Маркерами обычно служат источники инфракрасного излучения (как активные, так и пассивные), а также видимые маркеры наподобие ][https://ru.wikipedia.org/wiki/QR-код QR]-кодов. Такой вид трекинга возможен только в пределах прямой видимости маркера.
=== Задача Perspective-n-Point (PnP) ===
#[http://sv-journal.org/2015-4/09/index.php?lang=ru POS] (Pose from Orthography and Scaling), аппроксимирующий перспективную проекцию с помощью масштабированной ортогональной проекции и находящий матрицу поворота и вектор сдвига объекта путём решения линейной системы
#[https://github.com/opencv/opencv/wiki/Posit POSIT] (POS with ITerations), который использует в цикле аппроксимацию нахождения положения POS для нахождения более хорошей масштабированной ортогональной проекции особых точек, а затем применяет POS к этим точкам, а не к исходным. POSIT сходится к точному решению за несколько итераций.
#[https://opencv.org/ OpenCV] — библиотека компьютерного зрения широкого назначения с открытым исходным кодом. Основные части библиотеки — интерпретация изображений и алгоритмы машинного обучения. Список возможностей, предоставляемых OpenCV, весьма обширен: интерпретация изображений, калибровка камеры по эталону, устранение оптических искажений, анализ перемещения объекта, определение формы объекта и слежение за объектом, сегментация объекта и др. Нам же интеcно [https://docs.opencv.org/3.1.0/d9/d0c/group__calib3d.html#ga549c2075fac14829ff4a58bc931c033d solvePnP] === SLAM — Simultaneous Localization and Mapping === Метод одновременной локализации и построения карты (SLAM) — наиболее популярный способ позиционирования, который применяется для отслеживания положения в пространстве.[[File:Slam.png|400px|right]]Алгоритм состоит из двух частей: первая — составление карты неизвестного окружающего пространства на основе измерений (данные с [https://ru.wikipedia.org/wiki/Одометр одометра] или [https://ru.wikipedia.org/wiki/Стереоскопический_фотоаппарат стерео-камеры]), вторая — определение своего местоположения (локализация) в пространстве на основе сравнения текущих измерений с имеющейся картой пространства. Данный цикл непрерывно пере вычисляется, при этом результаты одного процесса участвуют в вычислениях другого процесса. Наиболее популярные методы решения задачи включают в себя фильтр частиц и расширенный [https://ru.wikipedia.org/wiki/Фильтр_Калмана фильтр Калмана].SLAM удобен для мобильных решений виртуальной и дополненной реальности. Недостатком данного подхода является большая вычислительная сложность. === Инерциальный трекинг ===Современные инерциальные измерительные системы ([https://en.wikipedia.org/wiki/Inertial_measurement_unit IMU]) на основе [https://ru.wikipedia.org/wiki/Микроэлектромеханические_системы MEMS-технологии] позволяют отслеживать ориентацию (roll, pitch, yaw) в пространстве с большой точностью и минимальными задержками.[[File:gyro.gif|500px|center]]
32
правки

Навигация