Изменения

Перейти к: навигация, поиск

Карлукова M32342 временная статья

6 байт добавлено, 18:35, 22 мая 2020
Нет описания правки
<tex>A(t) \cdot (1 - c_1 \cdot t - c_2 \cdot t^2 - \ldots - c_k \cdot t^k) = a_0 + (a_1 - c_1 \cdot a_0) \cdot t + (a_2 - c_1 \cdot a_1 - c_2 \cdot a_0) \cdot t^2 + \ldots + \\ + (a_{k - 1} - \sum\limits_{i = 1}^{k - 1} c_i \cdot a_{k - 1 - i}) \cdot t^{k - 1} + (a_k - \sum\limits_{i = 1}^k c_i \cdot a_{k - i}) \cdot t^k + \ldots + (a_n - \sum\limits_{i = 1}^n c_i \cdot a_{n - i}) \cdot t^n + \ldots</tex>.
Для всех <tex>\forall n \geqslant k</tex> последовательность <tex> a_0, a_1, \ldots, a_n, \ldots </tex> линейным образом определяется через <tex>k</tex> предыдущих членов, поэтому в правой части все коэффициенты при степенях, начиная с <tex>k</tex>, обнулятся, а равенство будет выглядеть так:
<tex>A(t) \cdot (1 - c_1 \cdot t - c_2 \cdot t^2 - \ldots - c_k \cdot t^k) = a_0 + (a_1 - c_1 \cdot a_0) \cdot t + (a_2 - c_1 \cdot a_1 - c_2 \cdot a_0) \cdot t^2 + \ldots + (a_{k - 1} - \sum\limits_{i = 1}^{k - 1} c_i \cdot a_{k - 1 - i}) \cdot t^{k - 1}</tex>.
Перепишем первое равенство, выразив <tex>P(t)</tex> через <tex>A(t)</tex> и <tex>Q(t)</tex>: <tex>P(t) = A(t) \cdot Q(t)</tex>.
Так как <tex>deg(P) < k</tex>, выполнено <tex>p_n = 0</tex> для любого <tex>\forall n \geqslant k </tex>. Расписывая <tex>p_n</tex> по определению [[Арифметические действия с формальными степенными рядами#def_mul|произведения степенных рядов]], получаем <tex>p_n = \sum\limits_{i = 0}^n a_{n-i} \cdot q_{i} = 0</tex>
Разобьём полученную сумму на две: <tex>p_n = \sum\limits_{i = 0}^{k} a_{n-i}\cdot q_{i} + \sum\limits_{i = k+1}^n a_{n-i}\cdot q_{i}</tex>. Вторая компонента равна нулю, поскольку <tex>deg(Q) = k</tex>. Тогда <tex>p_n = \sum\limits_{i = 0}^k a_{n-i} \cdot q_{i} = 0</tex>.
693
правки

Навигация