Изменения
Нет описания правки
# Является ли что следующее свойство перечислимых языков перечислимым: язык содержит пару $(p, x)$, для которой $p(x) = 1$?
# Является ли что следующее свойство перечислимых языков перечислимым: язык содержит пару $(p, x)$, для которой $p(x) \ne 1$?
# Множество $A$ назвается эффективно бесконечным, если существует всюду определенная вычислимая функция $f$, которая по числу $n$ выводит $n$ различных элементов множества $A$. Докажите, что если множество $A$ содержит бесконечное перечислимое подмножество, то оно эффективно бесконечно.
# Докажите, что если множество $A$ эффективно бесконечно, то оно содержит бесконечное перечислимое подмножество.
# Обозначим как $L(p)$ множество слов, которые допускается программой $p$. Множество $A$ назвается эффективно неперечислимым, если существует всюду определенная вычислимая функция $f$, которая по программе $p$ указывает слово $x$, такое что $x \in L(p) \oplus A$. Докажите, что дополнение к диагонали универсального множества $\overline D$, где $D = \left\{p | \langle p, p\rangle \in U\right\}$, является эффективно неперечислимым.
# Докажите, что дополнение к универсальному множеству $\overline U$ является эффективно неперечислимым.
# Докажите, что любое эффективно неперечислимое множество является эффективно бесконечным.
# Докажите, что множество является иммунным тогда и только тогда, когда оно не содержит бесконечных разрешимых подмножеств.
# Рассмотрим два множества $A$ и $B$. Назовём их вычислимо изоморфными, если существует всюду определенная вычислимая биекция $\varphi : \mathbb{N} \to \mathbb{N}$, такая что $x \in A$ тогда и только тогда, когда $\varphi(x) \in B$. Приведите пример различных бесконечных вычислимо изоморфных множеств.
# Докажите или опровергните, что любые два бесконечных разрешимых множества, дополнения к которым также бесконечны, являются вычислимо изоморфными.
# Докажите или опровергните, что любые два бесконечных перечислимых множества, дополнения к которым также бесконечны, являются вычислимо изоморфными.
# Существует ли множество натуральных чисел $A$, к которому m-сводится любой множество натуральных чисел?
# Множество называется m-полным, если к нему m-сводится любое перечислимое множество. Докажите, что универсальное множество является $m$-полным.
# Докажите, что диагональ универсального множества (множество $\{u | (u, u) \in U\}$ является m-полным.