Изменения

Перейти к: навигация, поиск

Модели клеточных автоматов

5073 байта добавлено, 17:34, 24 июня 2020
Wolfram's codes&classes
}}
= Игра «Жизнь» (ADD PICTURES) =
{{Определение
|definition=
Следовательно, в «Жизни» существуют сады Эдема.
= Автомат фон Неймана Ооно–Кохомото (NOT STARTED) ='''TODO: WRITE THE ARTICLE'''Смотреть в статье<ref>Лобанов А.И. Модели клеточных автоматов // Компьютерные исследования и моделирование, 2010, т. 2, № 3, с. 273-293</ref>.
= Коды Классификация Вольфрама и коды Вольфрама (EXPLAIN THE RULES)={{Определение|definition='''Классификация Вольфрама'''<ref>Wolfram, Stephen, A New Kind of Science. Wolfram Media, Inc., May 14, 2002. ISBN 1-57955-008-8</ref> {{---}} система классификации клеточных автоматов, основанная на их поведении..}} Классы, предложенные С. Вольфрамом:# Эволюция системы заканчивается переходом всех клеток поля в одинаковое состояние;# Существует много конечных состояний, но все они состоят из набора простых структур, которые остаются неизменными или повторяются через некоторое небольшое число шагов;# Поведение сложное, во многих отношениях выглядит хаотическим;# Смесь хаоса и порядка: порождаются локальные структуры, которые перемещаются и взаимодействуют друг с другом очень сложным образом.<br>Отнесение конкретного клеточного автомата к какому-либо из классов затруднено, так как не указано, при каких начальных условиях ожидается указанное выше поведение. Предполагается, что класс следует выбирать по самому сложному поведению, которое удастся получить. <br><br>В работе П.С. Скакова<ref>Скаков П.С. Классификация поведения одномерных клеточных автоматов. СПб., 2007 — URL: http://is.ifmo.ru/diploma-theses/_skakov_master.pdf</ref> была предложена новая классификация, являющаяся уточнением и модификацией классификации Вольфрама, проведённой с целью уменьшения сложности определения класса.<br>{{Определение|definition='''Код Вольфрама''' {{---}} система именования клеточных автоматов (как правило, [[Линейный клеточный автомат, эквивалентность МТ|ЛКА]]), предложенная С. Вольфрамом в 1983 году<ref>Wolfram, Stephen (July 1983). "Statistical Mechanics of Cellular Automata". Reviews of Modern Physics. 55: 601–644</ref>.<br>Код основан на наблюдении, что таблица, определяющая новое состояние каждой ячейки в автомате, как функция состояний в его окрестности, может интерпретироваться как число из <tex>k</tex>-цифр в <tex>S</tex>-арной позиционной системе счисления, где <tex>S</tex> {{---}} число состояний, которое может иметь каждая ячейка в автомате, <tex>k = S^{2n + 1}</tex> {{---}} число конфигураций окрестности, а <tex>n</tex> {{---}} радиус окрестности.}}В соответствии с определением, код может быть вычислен следующим образом:# Определить все возможные конфигурации состояний окрестности данной ячейки;# Интерпретируя каждую конфигурацию как число, как описано выше, отсортировать их по убыванию;# Для каждой конфигурации определить состояние, которое будет иметь данная ячейка в соответствии с этим правилом на следующей итерации;# Интерпретируя полученный список состояний как <tex>S</tex>-арное число, преобразовать это число в десятичное. Полученное десятичное число является кодом Вольфрама.<br>Далее в статье будут приведены наиболее известные правила. == Правило 30 ==== Правило 90 ==== Правило 110 ==== Правило 184 ==
= Wireworld =
436
правок

Навигация