15
правок
Изменения
Нет описания правки
{{В разработке}}
{{Определение|definition ='''Оценка положения''' (англ. ''Pose Estimation'') {{-- представляет собой сочетание аппаратных средств -}} задача определения структуры объекта и программного обеспечения, которое позволяет определить абсолютное положение объекта положения этой структуры в пространстве. }}
== Области применения ==
Задача оценки положения движущихся и статичных объектов возникает во множестве прикладных областей. Сейчас происходит подъем популярности разработки устройств и систем, отслеживающих положения объектов окружающего мира и использующих эту информацию для различных целей, рассмотрим . Рассмотрим несколько областей:
#'''Транспортные средства с встроенными системами помощи водителю ''' ''(автопилот, круиз контроль и др.)''. Которые Эти системы помогают водителю с парковкой, контролируют скорость и направление движения, а также предупреждают об объектах, находящихся на дороге, о типе дорожного покрытия и возможных авариях.#'''Дополненная реальность:''' устройства , в которых в реальное изображение, получаемое с помощью видеокамер, встраивается некоторая информация , полезная человеку.#'''Виртуальная реальность: ''' оценка положения, как технология , является критически важной для достижения эффекта погружения в виртуальную реальность. В сочетании с отслеживанием ориентации становится возможным измерять и передавать в ВР виртуальную реальность все 6 степеней свободы ([https://en.wikipedia.org/wiki/Six_degrees_of_freedom 6-DoF]) реального мира.#'''Робототехника: '''Роботы роботы (Медицинскиемедицинские, научные, промышленные и др.) , которые основывают свое движение на построении карты окружения и препятствий.#'''Веб-технологии: '''Исследование юзабилити и исследование пользовательского опытаи удобства использования продукта.
== Методы решения задачи оценки положения ==
=== Акустические методы===
Акустические приборы слежения используют ультразвуковые (высокочастотные) звуковые волны для измерения положения и ориентации целевого объектав пространстве. Для определения положения объекта либо измеряется время пролёта ([https://en.wikipedia.org/wiki/Time_of_arrival time-of-arrival]) звуковой волны от передатчика к приёмникам, либо разность фаз синусоидальной звуковой волны при приёмо-передаче. Алгоритмы трекинга отслеживания положения при использовании акустических приборов основаны на [https://en.wikipedia.org/wiki/True_range_multilateration Трилатерациитрилатерации] и расчете [https://en.wikipedia.org/wiki/Angle_of_arrival Угла Прибытияугла прибытия].При использовании данных методов, разработчики сталкиваются с некоторыми проблемами: акустические трекеры, как правило имею , имеют низкую скорость обновления , связанную с низкой скорости скоростью звука в воздухе, скорость звука в воздухе которая зависит от внешних факторов среды, таких как температура, давление и влажность.
=== Радиочастотные методы ===
Методов, основанных на радиочастотах , достаточно много.#'''Позиционирования Позиционированиe с использованием пассивных радиочастотных идентификаторов [https://ru.wikipedia.org/wiki/RFID#Антиколлизионный_механизм_(меток) RFID]''' <br /> Основное назначение систем с пассивными RFID метками – {{---}} идентификация. Они применяются в системах, традиционно использовавших штрих-коды или магнитные карточки – : в системах распознавания товаров и грузов, опознания людей, в системах контроля и управления доступом (СКУД) и т.п.Система включает RFID метки с уникальными кодами и считыватели и работает следующим образом. Считыватель непрерывно генерирует радиоизлучение заданной частоты. ЧИП метки, попадая в зону действия считывателя, использует это излучение в качестве источника электропитания и передает на считыватель идентификационный код. Радиус действия считывателя составляет около метра.<br />#'''Позиционирование с использованием активных [https://ru.wikipedia.org/wiki/RFID#Антиколлизионный_механизм_(меток) RFID] ''' <br/>Активные радиочастотные метки используются при необходимости отслеживания предметов на относительно больших расстояниях (например, на территории сортировочной площадки). Рабочие частоты активных RFID – меток {{---}} 455МГц, 2,.4ГГц или 5,.8ГГц, а радиус действия – {{---}} до ста метров. Питаются активные метки от встроенного аккумулятора.Существуют активные метки двух типов: [https://ru.wikipedia.org/wiki/Маркерный_радиомаяк радиомаякиТранспондер транспондеры] и [https://ru.wikipedia.org/wiki/Транспондер транспондерыМаркерный_радиомаяк радиомаяки]. Транспондеры включаются, получая сигнал считывателя. Они применяются в АС оплаты проезда, на КПП, въездных порталах и других подобных системах.Радиомаяки используются в системах позиционирования реального времени. Радиомаяк отправляет пакеты с уникальным идентификационным кодом по команде либо с заданной периодичностью. Пакеты принимаются как минимум тремя приемниками, расположенными по периметру контролируемой зоны. Расстояние от маячка до приемников с фиксированными координатами определяются по углу направления на маячок [https://en.wikipedia.org/wiki/Angle_of_arrival Angle of arrival] (AoA), по времени прихода сигнала [https://en.wikipedia.org/wiki/Time_of_arrival Time of arrival] (ToA) или по времени распространения сигнала от маячка до приемника [https://en.wikipedia.org/wiki/Time_of_flight Time-of-flight] (ToF).Инфраструктура системы строится на базе проводной сети и в двух последних случаях требует синхронизации.<br />#''' Ultra Wideband (UWB) позиционирование '''<br/> Технология UWB (сверхширокополосная) использует короткие импульсы с максимальной полосой пропускания при минимальной центральной частоте. У большинства производителей центральная частота составляет несколько гигагерц, а относительная ширина полосы – {{---}} 25-100%. Технология используется в связи, радиолокации, измерении расстояний и позиционировании.Это обеспечивается передачей коротких импульсов, широкополосных по своей природе. Идеальный импульс (волна конечной амплитуды и бесконечно малой длительности), как показывает [https://ru.wikipedia.org/wiki/Анализ_Фурье анализ Фурье], обеспечивает бесконечную полосу пропускания. UWB сигнал не походит на модулированные синусоидальные волны, а напоминает серию импульсов. Производители предлагают разные варианты UWB технологии. Различаются формы импульсов. В некоторых случаях используются относительно мощные одиночные импульсы, в других – {{---}} сотни миллионов маломощных импульсов в секунду. Применяется как когерентная (последовательная) обработка сигнала, так и не когерентная. Все это приводит к значительному различию характеристик UWB систем разных производителей.
=== Магнитные методы ===
=== Оптические методы ===
Оптические методы представляют собой совокупность алгоритмов [https://ru.wikipedia.org/wiki/Компьютерное_зрение компьютерного зрения] и отслеживающих устройств, в роли которых выступают камеры видимого или инфракрасного диапазона, стерео-камеры и камеры глубины. Оптический трекинг основан на том же принципе, что и стереоскопического стереоскопическое зрения человека. Когда человек смотрит на объект с помощью бинокулярного зрения, он в состоянии определить , приблизительно на каком расстоянии объект находится. Не достаточно просто установить пару несколько камер для имитации стереоскопического зрения человека. Камеры должны определить расстояние до объекта и его положения в пространстве, так что их необходимо откалибровать.[https://ru.wikipedia.org/wiki/Оптическая_система Оптические системы] надежны и относительно дешевы, но их с ними трудно калиброватьпровести начальную калибровку. Кроме того, система требует прямой линии света без закупорки, в противном случае мы получаем неправильные данные.
В зависимости от наличия специальных оптических маркеров выделяют отдельно:
*'''Без маркерный Безмаркерный трекинг: '''как правило строится на сложных алгоритмах с использованием двух и более камер, либо стерео -камер с сенсорами глубины. Используется наибольшим образом в автомобилях с автопилотам автопилотом и иными системами помощи водителю.
*'''Трекинг с использованием маркеров:''' предполагает заранее заданную модель объекта, которую можно отслеживать даже с одной камерой. Маркерами обычно служат источники инфракрасного излучения (как активные, так и пассивные), а также видимые маркеры наподобие [https://ru.wikipedia.org/wiki/QR-код QR]-кодов. Такой вид трекинга возможен только в пределах прямой видимости маркера.
[[Файл:Pnp.gif |400px|thumb| right| Рис. 1 Задача (PnP)]]
При оптическом отслеживании для определения положения объекта в пространстве решается так называемая задача PnP (Perspective-n-Point),когда по перспективной проекции объекта на плоскость сенсора камеры необходимо определить положение объекта в 3D-пространстве.
Для заданной 3D-модели объекта и 2D-проекции объекта на плоскость камеры решается система уравнений. В результате чего получается множество возможных решений. Количество решений зависит от числа точек в 3D-модели объекта.\ Однозначное решение для определения 6-DoF положения объекта можно получить как минимум при 4 точках. Для треугольника получается от 2 до 4 возможных решений, то есть положение не может быть определено однозначно. [[Файл:triangles.gif |400px|thumb| right| Рис. 2 Решение "треугольников"]]
Решение предлагается достаточно большим количеством алгоритмов, реализованных в виде библиотек:
#'''[http://sv-journal.org/2015-4/09/index.php?lang=ru POS]''' ''(Pose from Orthography and Scaling)'', аппроксимирующий перспективную проекцию с помощью масштабированной ортогональной проекции и находящий матрицу поворота и вектор сдвига объекта путём решения линейной системы уравнений.
#'''[https://github.com/opencv/opencv/wiki/Posit POSIT]''' ''(POS with ITerations)'', который использует в цикле аппроксимацию нахождения положения POS для нахождения более хорошей масштабированной ортогональной проекции особых точек, а затем применяет POS к этим точкам, а не к исходным. POSIT сходится к точному решению за несколько итераций.
#'''[https://opencv.org/ OpenCV]''' — {{---}} библиотека компьютерного зрения широкого назначения с открытым исходным кодом. Основные части библиотеки — {{---}} интерпретация изображений и алгоритмы машинного обучения. Список возможностей, предоставляемых OpenCV, весьма обширен: интерпретация изображений, калибровка камеры по эталону, устранение оптических искажений, анализ перемещения объекта, определение формы объекта и слежение за объектом, сегментация объекта и др. Нам же интереcтно интереcен метод [https://docs.opencv.org/3.1.0/d9/d0c/group__calib3d.html#ga549c2075fac14829ff4a58bc931c033d solvePnP].
=== SLAM — {{---}} Simultaneous Localization and Mapping === Метод одновременной локализации и построения карты (SLAM) — {{---}} наиболее популярный способ позиционирования, который применяется для отслеживания положения в пространстве.[[Файл:Slam.png |400px|thumb| right| Рис. 3 Метод SLAM]]Алгоритм состоит из двух частей: первая — {{---}} составление карты неизвестного окружающего пространства на основе измерений (данные с [https://ru.wikipedia.org/wiki/Одометр одометра] или [https://ru.wikipedia.org/wiki/Стереоскопический_фотоаппарат стерео-камеры]), вторая — {{---}} определение своего местоположения (локализация) в пространстве на основе сравнения текущих измерений с имеющейся картой пространства. Данный цикл непрерывно пере вычисляетсяперевычисляется, при этом результаты одного процесса участвуют в вычислениях другого процесса. Наиболее популярные методы решения задачи включают в себя фильтр частиц и расширенный [https://ru.wikipedia.org/wiki/Фильтр_Калмана фильтр Калмана].SLAM удобен для мобильных решений виртуальной и дополненной реальности. Недостатком данного подхода является большая вычислительная сложность.
=== Инерциальный трекинг ===
Современные инерциальные измерительные системы ([https://en.wikipedia.org/wiki/Inertial_measurement_unit IMU]) на основе [https://ru.wikipedia.org/wiki/Микроэлектромеханические_системы MEMS-технологии] позволяют отслеживать ориентацию (roll, pitch, yaw) в пространстве с большой точностью и минимальными задержками.[[Файл:gyro.gif |400px|thumb| right| Рис. 4 MEMS]]
Благодаря алгоритмам [https://en.wikipedia.org/wiki/Sensor_fusion «sensor fusion»] на основе [https://robotclass.ru/articles/complementary-filter комплементарного фильтра] или [https://ru.wikipedia.org/wiki/Фильтр_Калмана фильтра Калмана] данные с гироскопа и акселерометра успешно корректируют друг друга и обеспечивают точность как для кратковременных измерений, так и для длительного периода. Однако определение координат (перемещения) за счёт двойного интегрирования линейного ускорения ([https://en.wikipedia.org/wiki/Dead_reckoning dead reckoning]), вычисленного из сырых данных с [https://ru.wikipedia.org/wiki/Акселерометр акселерометра], не удовлетворяет требованиям по точности на длительных периодах времени. Акселерометр сам по себе даёт сильно зашумленные данные, и при интегрировании ошибка увеличивается со временем квадратично.Решить данную проблему помогает комбинирование инерциального подхода к трекингу с другими методами, которые периодически корректируют, так называемый, дрифт акселерометра.
=== Гибридные методы ===
Так как ни один из методов не является безупречным, и все они имеют свои слабые места, наиболее разумно комбинировать различные методы отслеживания. Так инерциальный трекинг (IMU) может обеспечить высокую частоту обновления данных (до 1000 Гц), в то время как оптические методы могут дать стабильную точность в длительные периоды времени (корректирование дрифта).
== Источники информации==
* [https://ru.qwe.wiki/wiki/Augmented_reality Дополненная реальность.]
* [https://ru.qwe.wiki/wiki/Positional_tracking Positional tracking.]
* [http://docs.cntd.ru/document/gost-r-54621-2011 ГОСТ Р 54621-2011. Информационные технологии. Радиочастотная идентификация для управления предметами.]
* [https://habr.com/ru/post/482220/ Локализация по Aruco маркерам]
* [https://habr.com/ru/post/397757/ Обзор методов и технологий отслеживания положения для виртуальной реальности.]
* [https://nanonets.com/blog/object-tracking-deepsort/ DeepSORT: Deep Learning to Track Custom Objects in a Video.]
{{В разработке}}
[[Категория:Компьютерное зрение]]