Изменения

Перейти к: навигация, поиск

Обсуждение участника:MetaMockery

180 байт добавлено, 11:26, 29 декабря 2020
Малая теорема Ферма и теорема Эйлера
Число <math>\overline{x}</math> называется вычетом по модулю <math>n</math>, если <math>\overline{x} \equiv x \ (mod \ n)</math>. Вычет <math>\overline{x}</math> называется обратимым вычетом, если существует вычет <math>\overline{y}</math>, такой что <math>\overline{x}\overline{y} \equiv 1 \ (mod \ n)</math>. Заметим, что вычет <math>\overline{x}</math> обратим тогда и только тогда, когда <math>\overline{x}</math> и <math>n</math> взаимно просты. Это обосновывается тем, что данное выражение можно представить в виде [https://e-maxx.ru/algo/diofant_2_equation линейного диофантово уравнения второго порядка] <math>\overline{x}\cdot\overline{y} + m \cdot n = 1</math>. Как видно из статьи, решение существует только при <math>(\overline{x}, n) = 1</math>. В таком случае, у числа <math>n</math> существует всего <math>\varphi(n)</math> обратимых вычетов. Пусть <math>\mathbb{Z}_{n}^{*}</math> {{---}} множество всех обратимых вычетов по модулю <math>n</math>.
Достаточно доказать данную теорему только для вычетов, так как мы знаем, что если остаток числа <math>a</math> по модулю <math>n</math> взаимно прост с <math>n</math>, то и само число взаимно просто с <math>n</math>. Напомним, что данный факт был ранее доказан в доказательстве мультипликативности функции Эйлера.
Рассмотрим вычеты по модулю <math>n</math>. Так как <math>n</math> и <math>a</math> взаимно просты, то вычет <math>\overline{a}</math> обратим. Пусть <math>\overline{b_1}, \overline{b_2}, \dots , \overline{b_{\varphi(n)}}</math> {{---}} все обратимые вычеты по модулю <math>n</math>. Тогда вычет <math>\overline{b} = \overline{b_1}\overline{b_2}\dots\overline{b_{\varphi(n)}}</math>, равный произведению всех обратимых вычетов, тоже обратим. Заметим, что отображение <math>\mathbb{Z}_{n}^{*} \to \mathbb{Z}_{n}^{*}</math>, заданное формулой <math>\overline{x} \mapsto \overline{a}\cdot\overline{x}</math> является биекцией. Действительно, мы просто умножаем каждый остаток на какую-то константу, от этого множество вычетов не изменится. В таком случае в выражении <math> \overline{a}^{\varphi(n)}\overline{b} = (\overline{a} \overline{b_1}) \dots (\overline{a} \overline{b_{\varphi(n)}}) </math>, в правой части стоит произведение всех обратимых вычетов, но взятое в другом порядке. Тогда <math>\overline{a}^{\varphi(n)}\overline{b} = \overline{b}</math>. Умножая обе части на вычет, обратный к <math>\overline{b}</math>, получим, что <math>\overline{a}^{\varphi(n)} \equiv 1 \ (mod \ n) </math>, что и требовалось доказать.
69
правок

Навигация