Изменения
→Предсказание молекулярных свойств
Первые нейронные сети для предсказания молекулярных свойств использовали Моргановские фингерпринты (англ. Morgan fingerpints), которые для каждого атома в молекуле выделяли всех его соседей на каком-то определенном расстоянии (которое является гиперпараметром) и смотрели на наличие такой подструктуры в молекуле. Получался аналог некоторого оne-hot кодирования. Впоследствии этот метод был несколько усовершенствован, и стали смотреть не на наличие подструктуры, а на то, сколько раз она встречается в молекуле. Прорыв в этой области случился с появлением сети NeuralFingerprints <ref>[https://arxiv.org/abs/1509.09292 Duvenaud et al., Convolutional Networks on Graphs for Learning Molecular Fingerprints, 2015]</ref>, где фингерпринты получались путем учета важности подструктур из Моргановских фингерпринтов, то есть были добавлены веса у каждой из возможных подструктур.
Эта сеть была одной из первых в этой области, и сейчас используется как baseline базовый метод в огромном количестве статей. В основу же новых методов сейчас чаще всего ложатся [[графовые нейронные сети]]. Подходы графовых нейронных сетей адаптируют под молекулярный граф путем поиска элементов на расстоянии не более, чем N (где N является гиперпараметром), или последовательным рассмотрением каждой вершины и усреднением полученых значений.
===Предсказание формы белка===