Изменения
Нет описания правки
== Виды подрисовки восстановления изображения ==
[[Файл:denoising_sample.jpg|thumb|550px|Пример устранения наложенного текста на изобрежение. В данном случае текстом покрыто 18.77% площади.]]
SC-FEGAN позволяет производить высококачественные изображения лиц, учитывая передаваемые пользователем эскизы и цвета на области маски (стертых частях изображения). Иными словами пользователь может легко редактировать изображения, стирая фрагменты, которые он хочет изменить, и подставляя туда эскизы и/или цвета, которые будут отражены в генерируемом фрагменте.
Дискриминатор данной сети принимает на вход несколько каналов изображения: выходное сгенерированное изображение генератора, маску и слой пользовательского ввода (эскизы и цвета)рисунок пользователя. Итоговая функция потерь формируется из выхода дискриминатора и функций сравнения изображения с оригинальным (per-pixel loss, perceptual loss, style loss).
----
=== Pluralistic Image Completion<ref>[https://github.com/lyndonzheng/Pluralistic-Inpainting Pluralistic Image Completion, Chuanxia Zheng, Tat-Jen Cham, Jianfei Cai]</ref> ===
Главное отличие этой модели от других {{---}} способность выдавать несколько вариантов заполнения отсутствующих областей изображения. Обычно имеется множество возможных реалистичных вариантов восстановления изображения, однако большинство моделей выдают на выход лишь один, пытаясь получить оригинальное изображение. Используя данную модель, человек может выбрать то сгенерированное изображение, которое выглядит более реалистичные генерируемые фрагменты и получить реалистичным, таким образом получая более качественное изображение на выходе.
Данная модель добивается такого эффекта путем пропускания входного изображения через две параллельные сети. Первая сеть {{---}} реконструирующая. Она пытается приблизить выходное изображение к оригинальному. Вторая сеть {{---}} генерирующая, работающая с априорным распределением отсутствующих областей и выборками известных пикселей. Каждая сеть имеет свой дискриминатор, помогающий обучить модель. Кроме выхода дискриминатора для обучения также используются функции сравнения полученного изображения с оригинальным.